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1 Two Motivating Experiments

Experiment 1 Each of you (the students in this course) have to declare an
integer between 0 and 100 to guess ”2/3 of the average of all the responses”.
More precisely, each student who guesses the highest integer which is not
higher than 2/3 of the average of all responses, will receive a prize of 10
Dollars.

How should you play this game? A naive guess would be that other players
choose randomly a strategy. In that case the mean in the game would be
around 50 and you should choose 33. But you realize that other players make
the same calculation - so nobody should say a number higher than 33. That
means that you should not name a number greater than 22 - and so on. The
winning number was 13. That means that people did this iteration about 3
times. But in fact, the stated numbers were all over the place - ranging from
0 to 40. That means that different students had different estimates of what
their fellow students would do.

• Being aware of your fellow players’ existence and trying to anticipate
their moves is called strategic behavior. Game theory is mainly about
designing models of strategic behavior.

• In this game, the winner has to correctly guess how often his fellow
players iterate. Assuming infinite iterations would be consistent but
those who bid 0 typically lose badly. Guessing higher numbers can
mean two things: (a) the player does not understand strategic behavior
or (b) the player understands strategic behavior but has low confidence
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in the ability of other players to understand that this is a strategic
game. Interestingly, most people knew at least one other person in the
class (hence there was at least some degree of what a game theorist
would call common knowledge of rationality).1

Experiment 2 I am going to auction a textbook (Osborne’s book). It costs
about 60 Dollars on Amazon. Each of your can bid secretly on the book and
the highest bidder wins the auction. However, all of you have to pay your bid
regardless of whether you win or lose.

In this game there is no optimal single bid for all players. You can check
that for all cases where each player i bids some fixed bid bi at least one of
the players will regret her decision and try to reverse it - we say that there
is no pure strategy Nash equilibrium in this game. Consider for example the
case where all player bid 55 Dollars. Then some player should bid 55 and 5
cents. No equilibrium!

There is an equilibrium if we allow players to randomize. You can check
that with two players who pick random numbers between 0 and 60 with equal
probability no player would want to change her pick - all picks will give her
zero profit in expectation.

The more players there are, the more the bid distribution is skewed to-
wards 0 (check)! We will formally discuss mixed strategy Nash equilibria in
a few lectures time.

2 What is game theory?

Definition 1 Game theory is a formal way to analyze interaction among a
group of rational agents who behave strategically.

This definition contains a number of important concepts which are dis-
cussed in order:

Group: In any game there is more than one decision maker who is
referred to as player. If there is a single player the game becomes a decision
problem.

1There is common knowledge of rationality between players A and B if A knows that
B is rational (and vice versa), if A knows that B knows that A is rational (and vice versa)
etc.
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Interaction: What one individual player does directly affects at least
one other player in the group. Otherwise the game is simple a series of
independent decision problems.

Strategic: Individual players account for this interdependence.
Rational: While accounting for this interdependence each player chooses

her best action. This condition can be weakened and we can assume that
agents are boundedly rational. Behavioral economics analyzes decision prob-
lems in which agents behave boundedly rational. Evolutionary game theory
is game theory with boundedly rational agents.

Example 1 Assume that 10 people go into a restaurant. Every person pays
for her own meal. This is a decision problem. Now assume that everyone
agrees before the meal to split the bill evenly amongst all 10 participants. Now
we have a game.

Game theory has found numerous applications in all fields of economics:

1. Trade: Levels of imports, exports, prices depend not only on your own
tariffs but also on tariffs of other countries.

2. Labor: Internal labor market promotions like tournaments: your chances
depend not only on effort but also on efforts of others.

3. IO: Price depends not only on your output but also on the output of
your competitor (market structure ...).

4. PF: My benefits from contributing to a public good depend on what
everyone else contributes.

5. Political Economy: Who/what I vote for depends on what everyone
else is voting for.

3 Decision Theory under Certainty

It makes sense to start by discussing trivial games - those we play against
ourselves, e.g. decision problems. Agents face situations in which they have
to make a choice. The actions of other agents do not influence my preference
ordering over those choices - therefore there is no strategic interaction going
on. Proper games will be discussed in the next lectures.
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A decision problem (A,¹) consists of a finite set of outcomes A = {a1, a2, .., an}
and a preference relation ¹. The expression a ¹ b should be interpreted as
”b is at least as good as a”. We expect the preference relation to fulfill two
simple axioms:

Axiom 1 Completeness. Any two outcomes can be ranked, e.g. a ¹ b or
b ¹ a.

Axiom 2 Transitivity implies that if a ≥ b and b ≥ c then a ≥ c.

Both axioms ensure that all choices can be ordered in a single chain without
gaps (axiom 1) and without cycles (axiom 2).

Although the preference relation is the basic primitive of any decision
problem (and generally observable) it is much easier to work with a consistent
utility function u : A → < because we only have to remember n real numbers
{u1, u2, .., un}.
Definition 2 A utility function u : A → < is consist with the preference
relationship of a decision problem (A,¹) if for all a, b ∈ A:

a ¹ b if and only if u (a) ≤ u (b)

Theorem 1 Assume the set of outcomes is finite. Then there exists a utility
function u which is consistent.

Proof: The proof is very simple. Simple collect all equivalent outcomes in
equivalence classes. There are finitely many of those equivalence classes
since there are only finitely many outcomes. Then we can order these
equivalence classes in a strictly increasing chain due to completeness
and transitivity.

Note that the utility function is not unique. In fact, any monotonic
transformation of a consistent utility function gives another utility function
which is also consistent.

We can now define what a rational decision maker is.

Definition 3 A rational decision maker who faces a decision problem (A,¹)
chooses an outcome a∗ ∈ A which maximizes his utility (or, equivalently, for
each a ∈ A we have a ¹ a∗).
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Remark 1 When there are infinitely many choices we want to make sure
that there is a continuous utility function. This requires one more axiom
which makes sure that preferences are continuous. For that purpose, one has
to define topology on the set of outcomes. We won’t deal with that since we
won’t gain much insight from it.

4 Decision Theory under Uncertainty

Lotteries are defined over the of outcomes A (which is again assumed to be
finite to keep things simple).

Definition 4 A simple lottery is defined as the set {(a1, p1) , (a2, p2) , .. (an, pn)}
such that

∑n
i=1 pi = 1 and 0 ≤ pi ≤ 1. In a simple lottery the outcome ai

occurs with probability pi.

When there are up to three outcomes we can conveniently describe the
set of lotteries in a graphical way (see triangle).

Under certainty the preference relationship can still be written down ex-
plicitly for finite A (simply write down all of the n(n+1)

2
rankings). Under

uncertainty there are suddenly infinitely many lotteries. This poses two
problems. First of all, it’s impractical to write a large number of lottery
comparisons down. A second (and deeper) point is the observation that the
preference relationship is in principle unobservable because of the infinite
number of necessary comparisons.

John von Neumann and Oscar Morgenstern showed that under some ad-
ditional restrictions on preferences over lotteries there exists a utility function
over outcomes such that the expected utility of a lottery provides a consistent
ranking of all lotteries.

Definition 5 Assume a utility function u over the outcomes A. The expected
utility of the lottery L = {(a1, p1) , (a2, p2) , .. (an, pn)} is defined as

u (L) =
n∑

i=1

u (ai) pi

Before we introduce the additional axioms we discuss the notion of com-
pound (two stage) lotteries.
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Definition 6 The compound lottery L̃ is expressed as L̃ = {(L1, q1) , (L2, 1− q1)}.
With probability q1 the simple lottery L1 is chosen and with probability 1− q1

the simple lottery L2 is chosen.

Note, that we implicitly distinguish between simple and compound lotteries.
Therefore, we allow that a simple lottery L might have the same outcome
distribution as the compound lottery L̃ but L ≺ L̃.

The first axiom assumes that only outcomes matter - the process which
generates those outcomes is irrelevant.

Axiom 3 Each compound lottery is equivalent to a simple lottery with the
same distribution over final outcomes.

In some books the equivalence of simple and compound lotteries is assumed
in the definition of a lottery. However, it is useful to keep those types of
lotteries separate because we know that the framing of a decision problem
influences how people make choices (i.e. both the process and the final out-
come distribution matter).

The next axiom is fairly uncontroversial.

Axiom 4 Monotonicity. Assume that the lottery L1 is preferred to lot-
tery L2. Then the compound lottery {(L1, α) , (L2, 1− α)} is preferred to
{(L1, β) , (L2, 1− β)} if α > β.

Axiom 5 Archimedian. For any outcomes a < b < c there is some lottery
L = {(a, α) , (c, 1− α)} such that the agent is indifferent between L and b.

The substitution axiom (also know as independence of irrelevant alterna-
tives) is the most critical axiom.

Axiom 6 Substitution. If lottery L1 is preferred to lottery L2 then any mix-
ture of these lotteries with any other lottery L3 preserves this ordering:

{(L1, α) , (L3, 1− α)} ≥ {(L2, α) , (L3, 1− α)}

This axiom is also known as independence of irrelevant alternatives.
Under these axioms we obtain the celebrated result due to John von

Neumann and Oskar Morgenstern.

Theorem 2 Under the above axioms an expected utility function exists.
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Proof: First of all we find the best and worst outcome b and w (possible be-
cause there are only finitely many outcomes). Because of the Archime-
dian axiom we can find a number αa for each outcome a such that L =
{(b, α) , (w, 1− α)}. We can define a utility function over each outcome
a such that u (a) = α. Using the monotonicity axiom it can be shown
that this number is unique. For each lottery we can now calculate its ex-
pected utility. It remains to be shown that this expected utility function
is consistent with the original preferences. So take two lotteries L1 and
L2 such that L1 ¹ L2. We can write L1 = {(a1, p1) , (a2, p2) , .. (an, pn)}
and L2 = {(a1, q1) , (a2, q2) , .. (an, qn)}. Now replace each outcome
ai by the above lotteries. The compound lottery can be rewritten
as L1 = {(b, ∑n

i=1 piu (ai)) , (w, 1−∑n
i=1 piu (ai))}. Similarly, we get

L2 = {(b, ∑n
i=1 qiu (ai)) , (w, 1−∑n

i=1 qiu (ai))}. By the monotonicity
axiom we can deduce that

∑n
i=1 piu (ai) ≤

∑n
i=1 qiu (ai), e.g. EU (L1) ≤

EU (L2). QED

From now on all payoffs in our course will be assumed to represent vNM
utility values. The expected payoff will be the expected utility.

4.1 Puzzles

EUT forms the basis of modern micro economics. Despite its success there
are important behavioral inconsistencies related to it. Some of those we are
going to discuss briefly before we turn our attention to proper games.

4.2 Allais Paradox

Consider the following choice situation (A) among two lotteries:

• Lottery A1 promises a sure win of 3000,

• Lottery A2 is a 80 percent chance to win 4000 (and zero in 20 percent
of the cases).

Typically, A1 is strictly preferred to A2. Now, consider two further choice
pairs (B) and (C):

• Lottery B1 promises a 90 percent chance of winning 3000,

• Lottery B2 is a 72 percent chance to win 4000.
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This choice is included to see if there is a certainty effect.

• Lottery C1 promises a 25 percent chance of winning 3000,

• Lottery C2 is a 20 percent chance to win 4000.

Most people in our class now preferred C2 over C1.
It can be checked that the lotteries Bi and Ci are derived from Ai just

by mixing the original lotteries with an irrelevant alternative - in the case of
(B) there is a 10 percent chance of getting nothing and a 90 percent chance
of getting (A), and in case of (C), there is a 75 percent chance of getting
nothing.

The Allais paradox is the most prominent example for behavioral incon-
sistencies related to the von Neumann Morgenstern axiomatic model of choice
under uncertainty. The Allais paradox shows that the significant majority of
real decision makers orders uncertain prospects in a way that is inconsistent
with the postulate that choices are independent of irrelevant alternatives.

There is an alternative explanation for the failure of EUT in this case.
Assume, that agents face the compound lottery instead of the simple lotteries
(B) and (C). Now the relationship to (A) is much more transparent - in fact,
one could tell a story such as: ”with 75 percent probability you are not invited
to choose between these two outcomes, and with 25 percent probability you
can choose either A1 or A2”. It’s likely that choices would be much more
consistent now.

The standard explanation for the failure of EUT is peoples’ inability to
keep small probability differences apart. 80 percent and 100 percent ’looks’
quite different and people focus on the probabilities. 20 percent and 25 per-
cent ’looks’ the same - so people focus on the values instead. Prospect theory
(Kahnemann and Tversky) can deal with the Allais paradox by weighting
probabilities accordingly.

4.3 Framing effects

Framing effects are preference reversals induced by changes in reference
points.

Consider the following choice situation (A):
Pair 1: 600 people are struck with a disease that could kill. Vaccine 1

will save 400 lives for sure while the second one will either save no one (1/3)
or will save everyone (with probability 2/3).
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Table 1: McNeil, Pauker and Tversky (1988)
Survival Mortality Both

Radiation Surgery Radiation Surgery Radiation Surgery
immediate 100 90 0 10
1 year 77 68 23 32
5 year 22 34 78 66
US 16 84 50 50 44 56
Israeli 20 80 45 56 34 66

Pair 2: 600 people are struck with a disease that could kill. Vaccine 1
will kill 200 people for sure while the second one implies a 2/3 chance that
no one will die and a 1/3 chance that everyone will die.

Note that both situations are identical because save is equal to not kill.
However, people tend to be risk averse in saving lives and risk loving if it is
phrased in terms of losses (kills).

Preference reversals have real effects and do not just appear in cute ex-
amples. McNeil, Pauker and Tversky (1988) asked American doctors and
Israeli medical students about how they would choose between two cancer
treatments (surgery and radiation) - they presented one group with survival
statistics, a second group with mortality statistics and a third group with
both. Table 1 sums up their choices.
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Lecture III: Normal Form Games, Rationality
and Iterated Deletion of Dominated Strategies

Markus M. Möbius

February 19, 2004

Readings:

• Gibbons, sections 1.1.A and 1.1.B

• Osborne, sections 2.1-2.5 and section 2.9

1 Definition of Normal Form Game

Game theory can be regarded as a multi-agent decision problem. It’s useful
to define first exactly what we mean by a game.

Every normal form (strategic form) game has the following ingredients.

1. There is a list of players D = {1, 2, .., I}. We mostly consider games
with just two players. As an example consider two people who want to
meet in New York.

2. Each player i can choose actions from a strategy set Si. To continue
our example, each of the players has the option to go the Empire State
building or meet at the old oak tree in Central Park (where ever that
is ...). So the strategy sets of both players are S1 = S2 = {E, C}.

3. The outcome of the game is defined by the ’strategy profile’ which
consists of all strategies chosen by the individual players. For example,
in our game there are four possible outcomes - both players meet at the
Empire state building (E, E), they miscoordinate, (E, C) and (C,E), or
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they meet in Central Park (C, C). Mathematically, the set of strategy
profiles (or outcomes of the game) is defined as

S = S1 × S2

In our case, S has order 4. If player 1 can take 5 possible actions, and
player 2 can take 10 possible actions, the set of profiles has order 50.

4. Players have preferences over the outcomes of the play. You should
realize that players cannot have preferences over the actions. In a game
my payoff depends on your action. In our New York game players just
want to be able to meet at the same spot. They don’t care if they
meet at the Empire State building or at Central Park. If they choose
E and the other player does so, too, fine! If they choose E but the
other player chooses C, then they are unhappy. So what matters to
players are outcomes, not actions (of course their actions influence the
outcome - but for each action there might be many possible outcomes -
in our example there are two possible outcomes per action). Recall, that
we can represent preferences over outcomes through a utility function.
Mathematically, preferences over outcomes are defined as:

ui : S → R

In our example, ui = 1 if both agents choose the same action, and 0
otherwise.

All this information can be conveniently expressed in a game matrix as
shown in figure 1:

A more formal definition of a game is given below:

Definition 1 A normal (strategic) form game G consists of

• A finite set of agents D = {1, 2, .., I}.
• Strategy sets S1, S2, .., SI

• Payoff functions ui : S1 × S2 × ..SI → R (i = 1, 2, .., n)

We’ll write S = S1 × S2 × .. × SI and we call s ∈ S a strategy profile
(s = (s1, s2, .., sI)). We denote the strategy choices of all players except
player i with s−i for (s1, s2, .., si−1, si+1, ..sI).
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Figure 1: General 2 by 2 game

0,0 1,1

1,1 0,0E

C

E C

2 Some Important Games

We already discussed coordination games. These are interesting games, be-
cause players have an incentive to work together rather than against each
other. The first games analyzed by game theorists were just the opposite -
zero sum games, where the sum of agents’ utilities in each outcome sums up
to zero (or a constant).

2.1 Zero-Sum Games

Zero-sum games are true games of conflict. Any gain on my side comes at
the expense of my opponents. Think of dividing up a pie. The size of the
pie doesn’t change - it’s all about redistribution of the pieces between the
players (tax policy is a good example).

The simplest zero sum game is matching pennies. This is a two player
game where player 1 get a Dollar from player 2 if both choose the same
action, and otherwise loses a Dollar:

−1,1 1,−1

1,−1 −1,1H

T

H T
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2.2 Battle of the Sexes

This game is interesting because it is a coordination game with some elements
of conflict. The idea is that a couple want to spend the evening together. The
wife wants to go to the Opera, while the husband wants to go to a football
game. Each get at least some utility from going together to at least one of
the venues, but each wants to go their favorite one (the husband is player 1
- the column player).

0,0 1,2

2,1 0,0F

O

F O

2.3 Chicken or Hawk versus Dove

This game is an anti-coordination game. The story is that two teenagers
drive home on a narrow road with their bikes, and in opposite directions.
None of them wants to go out of the way - whoever ’chickens’ out loses his
pride, while the tough guy wins. But if both stay tough, then they break
their bones. If both go out of the way, none of the them is too happy or
unhappy.

0,10 5,5

−1,−1 10,0t

c

t c
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2.4 Prisoner’s Dilemma

This game might be the most famous of all. It’s the mother of all cooperation
games. The story is that two prisoners are interrogated. If both cooperate
with the prosecution they get of with 1 year in prison. If both give each
other away (defect) they get 3 years in prison each. If one cooperates and
the other guy defects, then the cooperating guy is thrown into prison for 10
years, and the defecting guy walks free.

4,−1 0,0

3,3 −1,4C

D

C D

Note, that the best outcome in terms of welfare is if both cooperate. The
outcome (D, D) is worst in welfare terms, and is also Pareto dominated by
(C, C) because both players can do better. So clearly, (D, D) seems to be a
terrible outcome overall.

Some examples of Prisoner’s dilemmas are the following:

• Arms races. Two countries engage in an expensive arms race (corre-
sponds to outcome D,D). They both would like to spend their money
on (say) healthcare, but if one spends the money on healthcare and
the other country engages in arms build-up, the weak country will get
invaded.

• Missile defence. The missile defence initiative proposed by the ad-
ministration is interpreted by some observers as a Prisoner’s dilemma.
Country 1 (the US) can either not build a missile defence system (strat-
egy C) or build one (strategy D). Country 2 (Russia) can either not
build any more missiles (strategy C) or build lots more (strategy D).
If the US does not build a missile system, and Russia does not build
more missiles then both countries are fairly well off. If Russia builds
more missiles and the US has no defence then the US feels very unsafe.
If the US builds a missile shield, and Russia does not missiles then the
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US is happy but Russia feels unsafe. If the US builds missile defence
and Russia builds more missiles then they are equally unsafe as in the
(C,C) case, but they are much less well off because they both have to
increase their defence budget.

• Driving a big SUV can be a Prisoner’s Dilemma. I want my car to be
as safe as possible and buy an SUV. However, my neighbors who has
a Volkswagen Beetle suddenly is much worse off. If she also buys an
SUV she will be again safe but in this case both of us have to drive a
big car and buy a lot of gas.

2.5 Cournot Competition

This game has an infinite strategy space. Two firms choose output levels qi

and have cost function ci (qi). The products are undifferentiated and market
demand determines a price p (q1 + q2). Note, that this specification assumes
that the products of both firms are perfect substitutes, i.e. they are homoge-
nous products.

D = {1, 2}
S1 = S2 = R+

u1 (q1, q2) = q1p (q1 + q2)− c1 (q1)

u2 (q1, q2) = q2p (q1 + q2)− c2 (q2)

2.6 Bertrand Competition

Bertrand competition is in some ways the opposite of Cournot competition.
Firms compete in a homogenous product market but they set prices. Con-
sumers buy from the lowest cost firm.

Remark 1 It is interesting to compare Bertrand and Cournot competition
with perfect competition analyzed in standard micro theory. Under perfect
competition firms are price takers i.e. they cannot influence the market. In
this case there is not strategic interaction between firms - each firm solves a
simple profit maximization problem (decision problem). This is of course not
quite true since the auctioneer does determine prices such that demand and
supply equalize.
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3 What is a Game?

Before moving on it is useful to discuss two possible interpretations of normal-
form games.

1. The normal form game is simply a game played once in time between
a set of players.

2. The normal form game is one instance of a repeated game played be-
tween a large population of player 1’s and player 2’s who are randomly
matched together to play this stage game. Examples include driving
on the right-hand side (a coordination game continuously played be-
tween motorists in the US). Random matching is important here: if
the stage is played repeatedly with the same player we have a repeated
extensive form game (discussed in future lectures) and new strategic
considerations arise.

4 Two Brief Experiments

Experiment 1 (not done this year - reported from 2001 spring semester)
Student were asked which strategy they would play in the Prisoner’s dilemma.
The class was roughly divided in half - we calculated the expected payoff from
both strategies if people in the class would be randomly matched against each
other. We found that strategy D was better - this is unsurprising as we will
see later since strategy C is strictly dominated by strategy D.

Experiment 2 Iterated Deletion Game Class was asked to choose a
strategy for player 1 in the game below. No student chose strategy A, 7
students chose B, 11 students chose C and 4 students chose D.

The reason people gave were interesting:

• One student from the C-group said that that row gave the highest sum
of payoff when the row payoffs were added. Note, that this reasoning
is correct IF player 2 randomizes across her four strategies.

• In previous years, people often noted that C looks safe - it always gives
the highest or second-highest payoff.
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• One student chose B because in 2 our of 4 cases it is a best response
while A,C,D are best responses in only 1 out of four cases.

D

C

B

A

A B C D

5,2 2,6 1,4 0,4

0,0 3,2 2,1 1,1

7,0 2,2 1,5 5,1

9,5 1,3 0,2 4,8

In 2001 the results were similar: no student chose strategy A which is
weakly dominated by C. 2 students chose B, 9 students chose C because it
looked ’safe’ and 16 students chose D because of the high payoffs in that row.

It turns out that only (B,B) survives iterated deletion (see below).

5 Iterated Deletion of Dominated Strategies

How do agents play games? We can learn a lot by exploiting the assumption
that players are rational and that each player knows that other players are
rational. Sometimes this reasoning allows us to ’solve’ a game.

5.1 Rational Behavior

Assume that agent i has belief µi about the play of her opponents. A belief
is a probability distribution over the strategy set S−i.

Definition 2 Player i is rational with beliefs µi if

si ∈ arg max
s′i

Eµi(s−i)ui (s
′
i, s−i) ,
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or alternatively

simaximizes
∑
s−i

ui (s
′
i, s−i) µi (s−i) .

Note, that player i faces a simple decision problem as soon as she has formed
her belief µi.

An example illustrates this point: assume that I believe in the New-York
game that my friend will come to the Empire state building with 60 percent
probability and to Central Park with 40 percent probability. If I go to central
park I induce the following lottery LC over outcomes of the game: with 60
percent probability I will see the outcome (C,E) and with 40 percent (C, C):

LC = 0.6(C, E)⊕ 0.4(C,C) (1)

Thanks to our expected utility theorem we can easily evaluate the expected
utility of this lottery which is .4! Similarly, we can evaluate that playing E
induces a lottery with expected value .6. So I am rational and have the above
belief then I should choose E.

Definition 3 Strategy si is strictly dominated for player i if there is some
s′i ∈ Si such that

ui (s
′
i, s−i) > ui (si, s−i)

for all s−i ∈ S−i.

Note that the inequality is strict for all s−i. A strategy is weakly domi-
nated if the inequality is weak for all s−i and strict for at least one s−i.

Proposition 1 If player i is rational he will not play a strictly dominated
strategy.

Proof: If strategy si is strictly dominated by strategy s′i we can deduce that
for any belief of player i we have Eµi(s−i)ui (s

′
i, s−i) > Eµi(s−i)ui (si, s−i).

5.2 Iterated Dominance

The hardest task in solving a game is to determine players’ beliefs. A lot of
games can be simplified by rationality and the knowledge that my opponent
is rational. To see that look at the Prisoner’s Dilemma.
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Cooperating is a dominated strategy. A rational player would therefore
never cooperate. This solves the game since every player will defect. Notice
that I don’t have to know anything about the other player. This prediction
is interesting because it is the worst outcome in terms of joint surplus and
it would be Pareto improving if both players would cooperate. This result
highlights the value of commitment in the Prisoner’s dilemma - commitment
consists of credibly playing strategy C. For example, in the missile defence
example the ABM treaty (prohibits missile defence) and the START II agree-
ment (prohibits building of new missiles) effectively restrict both country’s
strategy sets to strategy C.

Now look at the next game.

D

U

L M R

2,2 1,1 4,0

1,2 4,1 3,5

1. If the column player is rational he shouldn’t play M

2. Row player should realize this if he know that the other player is ra-
tional. Thus he won’t play D.

3. Column player should realize that R knows that C is rational. If he
knows that R is rational he knows that R won’t play D. Hence he won’t
play R. This leaves (U,L) as only outcome for rational players.

It’s worth while to discuss the level of knowledge required by players.
R has to know that C is rational. C has to know that R knows that C is
rational. This latter knowledge is a ’higher order’ form of knowledge. It’s
not enough to know that my opponent is rational - I also have to be sure
that my opponent knows that I am rational. There are even higher order
types of knowledge. I might know that my opponent is rational and that he
knows that I am. But maybe he doesn’t know that I know that he knows.
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The higher the order of knowledge the more often the process of elimina-
tion can be repeated. For example, the game of experiment 2 can be solved
by the iterated deletion of dominated strategies.

If rationality is common knowledge we can repeat iterated deletion of
dominated strategies indefinitely - I know that my opponent is rational, that
he knows that I am rational, that I know that he knows that I know that I
am rational etc.

We will usually assume that rationality is common knowledge and that
we can therefore perform iterated deletion of strictly dominated strategies as
often as we like.

5.2.1 Other Models of Knowledge

To illustrate the importance of “Rationality is common knowledge” assump-
tion we discuss an alternative model of knowledge in the game above:

• Both players 1 and 2 are rational.

• Player 1 thinks that player 2 is clueless and randomizes across his
strategies with equal probability.

• Player 2 thinks that player 1 is rational and that player 1 thinks he is
randomizing.

In this case player 1 will optimally choose action D which gives her the highest
average payoff. Player 2 will correctly anticipate this and choose action R.

There is nothing wrong with this alternative model. However, there are
some potentially troublesome inconsistencies:

• Assume that we adopt the repeated game interpretation of a normal-
form game: the above game is one instance in a repeated game between
a large population of players 1’s and player 2’s who are repeatedly
matched against each other.

• Assume that player 1’s and player 2’s have a model of knowledge as
described above and play (D,R) all the time.

• A player 1 should realize after a while that player 2’s consistently play
R. Hence they should update their model of knowledge and conclude
that player 2 is not as clueless as he assumed.

11



• In fact, once player 1 concludes that player 2 consistently plays strategy
R he should switch to U which will increase his winnings.

When rationality is common knowledge these types of inconsistences will not
emerge. That’s one of the reasons why it is so commonly used in game theory.

However, the example of experiment 2 also showed that players are often
do not seem to be able to do deleted iteration in their head for more than
one or two rounds. It would be interesting to repeat the stage game many
times with random matching to see if player 1’s will switch to strategy B
gradually.

5.3 Formal Definition Of Iterated Dominance

• Step I: Define S0
i = Si

• Step II: Define

S1
i =

{
si ∈ S0

i

∣∣6 ∃s′i ∈ S0
i ui (s

′
i, s−i) > ui (si, s−i)∀s−i ∈ S0

−i

}

• Step k+1: Define

Sk+1
i =

{
si ∈ Sk

i

∣∣ 6 ∃s′i ∈ Sk
i ui (s

′
i, s−i) > ui (si, s−i)∀s−i ∈ Sk

−i

}

Sk+1
i is the set still not strictly dominated when you know your oppo-

nent uses some strategy in Sk
−i.

Note restrictions S0
−i, S1

−i, ..

Players know that opponents are rational, know that opponents know
that they are rational ..., e.g. rationality is common knowledge.

• Step ∞: Let S∞i =
⋂∞

k=1 Sk
i .

Note, that the process must stop after finitely many steps if the strategy
set is finite because the sets can only get smaller after each iteration.

Definition 4 G is solvable by pure strategy iterated strict dominance if S∞

contains a single strategy profile.

Note:
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• Most games are not dominance solvable (coordination game, zero sum
game).

• We have not specified the order in which strategies are eliminated. You
will show in the problem set that the speed and order of elimination
does not matter.

Intuition: Assume that you don’t delete all dominated strategies at
one stage of the iteration. Will you do so later? Sure you will: a
dominated strategy will still be dominated; at most you have deleted
a few more of your opponents strategies in the meantime which will
make it even ’easier’ to dominate the strategy.

• The same is not true for the elimination of weakly dominated strategies
as the next example shows.

B

M

T

L R

1,1 0,0

1,1 2,1

0,0 2,1

We can first eliminate T and then L in which case we know that (2,1)
is played for sure. However, if we eliminate B first and then R we know
that (1,1) is being played for sure. So weak elimination does not deliver
consistent results and is therefore generally a less attractive option than
the deletion of strictly dominated strategies.

Intuition: player 2’s strategies R and L give the same payoff when
1 plays M. This can lead to L weakly dominating R or vice versa de-
pending on whether player 1’s strategies B or T are deleted first. If L
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would strictly dominate R (or vice versa) this could not be the case: L
would always dominate R regardless of how many of 1’s strategies are
deleted.

Remark 2 With finite strategy sets the set S∞ is clearly non-empty because
after each stage there must be some dominant strategy left (in fact in a 2-
player n by m game the iterative process has to stop after at most n + m− 2
steps).

Remark 3 (for the mathematically inclined only) For infinite strategy sets it
is not obvious that the iterative process will result in a non-empty set. There
are examples of sequences of nested sets whose intersection is empty:

Sn =

(
0,

(
1

2

)n)
(2)

The intersection S∞of all these open intervals is the empty set. One way to
get a non-empty set S∞ is make sure that the sets Sk are closed and bounded
sets and hence compact (assuming a final-dimensional action space). Typi-
cally, this will be the case if the utility functions are continuous in players’
strategies (as in Cournot game).

6 Example: Cournot Competition

Cournot competition with two firms can be solved by iterated deletion in
some cases. Specifically, we look at a linear demand function p = α −
β (qi + qj) and constant marginal cost c such that the total cost of producing
qi units is cqi. It will be usefull to calculate the ’best-response’ function
BR (qj) of each firm i to the quantity choice qj of the other firm. By taking
the first-order condition of the profit function you can easily show that the
best-response function for both firms (there is symmetry!) is

BRi (qj) =

{
α−c
2β
− qj

2
if qj ≤ α−c

β

0 otherwise
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q
1

q 2

BR
2
(q

1
)

BR
1
(q

2
)

(q
1
* ,q

2
* )

(α−c)/β(α−c)/2β

The best-response function is decreasing in my belief of the other firm’s
action. Note, that for qj > α−c

β
firm i makes negative profits even if it

chooses the profit maximizing output. It therefore is better off to stay out of
the market and choose qi = 0.

• Initially, firms can set any quantity, i.e. S0
1 = S0

2 = <+. However,
the best-responses of each firm to any belief has to lie in the interval[
q, q

]
with q = 0 and q = α−c

2β
. All other strategies make negative

profits, are therefore dominated by some strategy inside this interval,
and eliminated.

• In the second stage only the strategies S1
1 = S1

2 = [BR1 (q) , BR1

(
q
)
]

survive (check for yourself graphically in the picture above!). Because
the BR functions are symmetric we can simply write:

S1
1 = S1

2 = [BR (q) , BR
(
q
)
] (3)

How do we get this set? These is set of possible best responses to some
strategy played by the other player in S0

i . All other strategies are never
best-responses and hence are dominated.

• In the third stage we get:

S3
1 = S3

2 = [BR2

(
BR1

(
q
))

, BR2 (BR1 (q))]

= [BR
(
BR

(
q
))

, BR (BR (q))] (4)

(note, that the BR function is decreasing which causes the reversal of
bounds in each iteration!).
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• Therefore in the 2k + 1th stage only strategies in

S2k+1
1 = S2k+1

2 = [BR2

(
..BR1

(
q
))

, BR2 (..BR1 (q))] (5)

survive.

It’s easy to show graphically that this interval shrinks in each iteration and
that the two limits converge to the intersection q∗1 = q∗2 of both best response
functions where q∗2 = BR2 (q∗1). Therefore, the Cournot game is solvable
through the iterated deletion of strictly dominated strategies.

A precise proof of this claim follows below - this is NOT required material
for the class.

• Let’s focus on the strategy set S2k+1 = [xk, yk] where:

xk = BR(BR(xk−1))

yk = BR(BR(yk−1))

x0 = 0

y0 =
α− c

2β
(6)

• The expression xk = BR(BR(xk−1)) can be calculated

xk =
α− c

4β
+

xk−1

4
(7)

• (xk) is an increasing sequence because the strategy sets are nested and
these are the lower bounds. The sequence is also bounded from above
and hence has to converge. So assume xk → x∗. The following has to
hold:

lim
k→∞

xk = lim
k→∞

[
α− c

4β
+

xk

4

]

x∗ =
α− c

4β
+

x∗

4

x∗ =
α− c

3β
(8)

The same is true for yk which converges to precisely the same limit. This
means that the process of iterated deletion eventually collapses to the point
where both firm set output to x∗ which is exactly at the intersection of both
firms’ best response curves.
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Remark 4 It can be shown that the same game with three firms is NOT
dominance solvable. You have to show that on the problem set!
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Lecture IV: Nash Equilibrium

Markus M. Möbius

February 19, 2004

Readings:

• Gibbons, sections 1.1.C and 1.2.B

• Osborne, sections 2.6-2.8 and sections 3.1 and 3.2

Iterated dominance is an attractive solution concept because it only as-
sumes that all players are rational and that it is common knowledge that
every player is rational (although this might be too strong an assumption as
our experiments showed). It is essentially a constructive concept - the idea
is to restrict my assumptions about the strategy choices of other players by
eliminating strategies one by one.

For a large class of games iterated deletion of strictly dominated strategies
significantly reduces the strategy set. However, only a small class of games
are solvable in this way (such as Counot competition with linear demand
curve).

Today we introduce the most important concept for solving games: Nash
equilibrium. We will later show that all finite games have at least one Nash
equilibrium, and that the set of Nash equilibria is a subset of the strategy pro-
files which survive iterated deletion. In that sense, Nash equilibrium makes
stronger predictions than iterated deletion would but it is not excessively
strong in the sense that it does not rule out any equilibrium play for some
games.

Definition 1 A strategy profile s∗ is a pure strategy Nash equilibrium of G
if and only if

ui

(
s∗i , s

∗
−i

) ≥ ui

(
si, s

∗
−i

)

for all players i and all si ∈ Si.
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Definition 2 A pure strategy NE is strict if

ui

(
s∗i , s

∗
−i

)
> ui

(
si, s

∗
−i

)

A Nash equilibrium captures the idea of equilibrium. Both players know
what strategy the other player is going to choose, and no player has an
incentive to deviate from equilibrium play because her strategy is a best
response to her belief about the other player’s strategy.

1 Games with Unique NE

1.1 Prisoner’s Dilemma

4,−1 0,0

3,3 −1,4C

D

C D

This game has the unique Nash equilibrium (D,D). It is easy to check
that each player can profitably deviate from every other strategy profile. For,
example (C,C) cannot be a NE because player 1 would gain from playing D
instead (as would player 2).

1.2 Example II

D

U

L M R

2,2 1,1 4,0

1,2 4,1 3,5
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In this game the unique Nash equilibrium is (U,L). It is easy to see that
(U,L) is a NE because both players would lose from deviating to any other
strategy.

To show hat there are no other Nash equilibria we could check each other
strategy profile, or note that S∞1 = {U} and S∞2 = {L} and use:

Proposition 1 If s∗ is a pure strategy Nash equilibrium of G then s∗ ∈ S∞.

Proof: Suppose not. Then there exists T such that s∗ ∈ ST
1 × ... × ST

I

but s∗ 6∈ ST+1
1 × ... × ST+1

I . The definition of ISD implies that there
exists s′i ∈ ST

i ⊆ Si such that ui (s
′
i, s−i) > ui (s

∗
i , s−i) for all s−i ∈ ST

−i.
Therefore there exists a s′i ∈ Si such that ui

(
s′i, s

∗
−i

)
> ui

(
s∗i , s

∗
−i

)
which contradicts that s∗ was a NE.

1.3 Cournot Competition

Using our new result it is easy to see that the unique Nash equilibrium of
the Cournot game with linear demand and constant marginal cost is the
intersection of the two BR functions since this was the only profile which
survived IDSDS.

A more direct proof notes that any Nash equilibrium has to lie on the
best response function of both players by the definition of NE:

Lemma 1 (q∗1, q
∗
2) is a NE if and only if q∗i ∈ BRi (q−i) for all i.

We have derived the best response functions of both firms in previous
lectures (see figure 1).

BRi (qj) =

{
α−c
2β
− qj

2
if qj ≤ α−c

β

0 otherwise

The NE is the solution to q1 = BR1 (q2) and q2 = BR2 (q1). This system
has exactly one solution. This can be shown algebraically or simply by
looking at the intersections of the BR graphs in figure 1. Because of symmetry
we know that q1 = q2 = q∗. Hence we obtain:

q∗ =
α− c

β
− q∗

2

This gives us the solution q∗ = 2(α−c)
3β

.
If both firms are not symmetric you have to solve a system of two equa-

tions with two unknowns (q1 and q2).
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Figure 1: BR functions of two firm Cournot game

q
1

q 2

BR
2
(q

1
)

BR
1
(q

2
)

(q
1
* ,q

2
* )

(α−c)/β(α−c)/2β

1.4 Bertrand Competition

Recall the Bertrand price setting game between two firms that sell a homoge-
nous product to consumers.

Two firms can simultaneously set any positive price pi (i = 1, 2) and
produce output at constant marginal cost c. They face a downward sloping
demand curve q = D (p) and consumers always buy from the lowest price
firm (this would not be true if the goods weren’t homogenous!). Therefore,
each firm faces demand

Di (p1, p2) =





D (pi) if pi < pj

D (pi) /2 if pi = pj

0 if pi > pj

We also assume that D (c) > 0, i.e. firms can sell a positive quantity if
they price at marginal cost (otherwise a market would not be viable - firms
couldn’t sell any output, or would have to accumulate losses to do so).

Lemma 2 The Bertrand game has the unique NE (p∗1, p
∗
2) = (c, c).

Proof: First we must show that (c,c) is a NE. It is easy to see that each firm
makes zero profits. Deviating to a price below c would cause losses to
the deviating firm. If any firm sets a higher price it does not sell any
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output and also makes zero profits. Therefore, there is no incentive to
deviate.

To show uniqueness we must show that any other strategy profile
(p1, p2) is not a NE. It’s easiest to distinguish lots of cases.

Case I: p1 < c or p2 < c In this case one (or both players) makes
negative losses. This player should set a price above his rival’s price
and cut his losses by not selling any output.

Case II: c ≤ p1 < p2 or c ≤ p2 < p1 Assume first that c < p1 < p2

or c < p2 < p1. In this case the firm with the higher price makes zero
profits. It could profitably deviate by setting a price equal to the rival’s
price and thus capture at least half of his market, and make strictly
positive profits. Now consider the case c = p1 < p2 or c = p2 < p1.
Now the lower price firm can charge a price slightly above marginal
cost (but still below the price of the rival) and make strictly positive
profits.

Case III: c < p1 = p2 Firm 1 could profitably deviate by setting a
price p1 = p2 − ε > c. The firm’s profits before and after the deviation
are:

πB =
D (p2)

2
(p2 − c)

πA = D (p2 − ε) (p2 − ε− c)

Note, that the demand function is decreasing. We can therefore deduce:

∆π = πA − πB ≥=
D (p2)

2
(p2 − c)− εD (p2)

This expression (the gain from deviating) is strictly positive for suffi-
ciently small ε. Therefore, (p1, p2) cannot be a NE.

Remark 1 In problem 11 of problem set 1 you had to solve for the unique
Nash equilibrium when one firm (say 2) has higher marginal cost c2 > c1.
Intuitively the price in the unique NE should be just below c2 - this would
keep firm 2 out of the market and firm 1 has no incentive to cut prices any
further. However, if firms can set any real positive price there is no pure NE.
Assume c2 = 10. If firm 1 sets prices at 9.99 it can do better by setting them
at 9.999 etc. Therefore, we have to assume that the pricing is discrete, i.e.
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can only be done in multiples of pennies say. In this way, the unique NE has
firm 1 setting a price p1 = c2 minus one penny.

Food for Thought: How would you modify the Bertrand game to make
it solvable through IDSDS? Hint: You have to (a) discretize the strategy
space, and (b) assume that D (p) = 0 for some sufficiently high price.
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Lecture IV: Nash Equilibrium II - Multiple
Equilibria

Markus M. Möbius

February 24, 2004

• Gibbons, sections 1.1.C and 1.2.B

• Osborne, sections 2.6-2.8 and sections 3.1 and 3.2

1 Multiple Equilibria I - Coordination

Lots of games have multiple Nash equilibria. In this case the problem arises
how to select between different equilibria.

1.1 New-York Game

Look at this simple coordination game:

0,0 1,1

1,1 0,0E

C

E C

This game has two Nash equilibria - (E,E) and (C,C). In both cases no
player can profitably deviate. (E,C) and (C,E) cannot be NE because both
players would have an incentive to deviate.
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1.2 Voting Game

Three players simultaneously cast ballots for one of three alternatives A,B
or C. If a majority chooses any policy that policy is implemented. If the
votes split 1-1-1 we assume that the status quo A is retained. Suppose the
preferences are:

u1 (A) > u1 (B) > u1 (C)

u2 (B) > u2 (C) > u2 (A)

u3 (C) > u3 (A) > u3 (B)

Claim 1 The game has several Nash equilibria including (A,A, A), (B,B,B),
(C, C, C),(A,B,A), and (A,C, C).

Informal Proof: In the first three cases no single player can change the
outcome. Therefore there is no profitable deviation. In the last two
equilibria each of the two A and two C players, respectively, is pivotal
but still would not deviate because it would lead to a less desirable
result.

1.3 Focal Points

In the New York game there is no sense in which one of the two equilibria is
’better’ than the other one.

For certain games Schelling’s (1961) concept of a tipping point can be a
useful way to select between different Nash equilibria. A focal point is a NE
which stands out from the set of NE - in games which are played frequently
social norms can develop. In one-shot games strategies which ’stand out’ are
frequently played. In both cases, players can coordinate by using knowledge
and information which is not part of the formal description of our game.

An example of a social norm is the fact that Americans drive on the right
hand side of the road. Consider the following game. Tom and Jerry drive in
two cars on a two lane road and in opposite directions. They can drive on
the right or on the left, but if they mis-coordinate they cause a traffic crash.
The game can be represented as follows:

2



0,0 1,1

1,1 0,0R

L

R L

We expect both drivers to choose (R,R) which is the social norm in this
game.

Next, let’s conduct a class experiment.

Class Experiment 1 You have to coordinate on what of the following four
actions - coordinating with your partner gives you a joint payoff of 1 Dollar.
Otherwise you both get zero Dollars. The actions are
{Fiat95,Fiat97, Saab98,Fiat98}.

We played the game with four pairs of students - three pairs coordinated
on SAAB98, one pair did not coordinate.

This experiment is meant to illustrate that a strategy which looks quite
distinct from the set of other available strategies (here, Fiats) can be a focal
point in a one-shot game (when no social norm can guide us).

2 Multiple Equilibria II - Battle of the Sexes

The payoffs in the Battle of the Sexes are assumed to be Dollars.

0,0 1,2

2,1 0,0F

O

F O
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(F,F) and (O,O) are both Nash equilibria of the game. The Battle of the
Sexes is an interesting coordination game because players are not indifferent
on which strategy to coordinate. Men want to watch Football, while Women
want to go to the Opera.

Class Experiment 2 You are playing the battle of the sexes. You are player
1. What will you play?

Last year: We divided the class up into men and women. 18 out of 25
men (i.e. 72 percent) chose the action which in case of coordination would
give them the higher payoff. In contrast, only 6 out of 11 women did the
same. These results replicate similar experiments by Rubinstein at Princeton
and Tel Aviv University. Men are simply more aggressive creatures...

When we aggregate up we found that 24 out of 36 people (66 percent)
play the preferred strategy in BoS.

Because there is an element of conflict in the BoS players use the framing
of the game in order to infer the strategies of their opponent. In the follow-
ing experiments the underlying game is always the above BoS. However, in
each case the results differ significantly from the basic experiment we just
conducted. This tells us that players signal their intention to each other, and
that the normal strategic form does not capture this belief formation process.

Class Experiment 3 You are player 1 in the Battle of the sexes. Player 2
makes the first move and chooses an action. You cannot observe her action
until you have chosen your own action. Which action will you choose.

Last year: Now a significantly higher number of students (17 instead of 12)
choose the less desirable action (O). Note, that the game is still the same
simultaneous move game as before. However, players seem to believe that
player 1 has an advantage by moving first, and they are more likely to ’cave
in’.

Class Experiment 4 You are player 1 in the Battle of the sexes. Before
actually playing the game, your opponent (player 2) had an opportunity to
make an announcement. Her announcement was ”I will play O”. You could
not make a counter-announcement. What will you play ?

Now 35 out of 36 students chose the less desirable action. The announcement
seems to strengthen beliefs that the other player will choose O.
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This kind of communication is called cheap talk because this type of
message is costless to the sender. For exactly this reason, it should not
matter for the analysis of the game. To see that, simply expand the strategy
set of player 2. Instead of strategies F and O she now has 4 strategies - Ff,
Fo, Of, Oo - where strategy Ff means that player 2 plays F and announces
to play f, while Of means that player 2 announces O and plays f. Clearly,
the strategies Of and Oo yield exactly the same payoffs when played against
any strategy of player 1. Therefore, the game has exactly the same NE as
before. However, the announcement seems to have successfully signalled to
player 1 that player 2 will choose her preferred strategy.

Class Experiment 5 Two players are playing the Battle of the Sexes. You
are player 1. Before actually playing the game, player 2 (the wife) had an
opportunity to make a short announcement. Player 2 choose to remain silent.
What is your prediction about the outcome of the game?

Less than 12 people choose the less desirable action in this case. Apparently,
silence is interpreted as weakness.

3 Multiple Equilibria III - Coordination and

Risk Dominance

The following symmetric coordination game is given.

B

A

A B

9,9 −15,8

8,−15 7,7

Class Experiment 6 Ask class how many would choose strategy A in this
coordination game.
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Observations:

1. This game has the two Nash equilibria, namely (A,A) and (B,B). Co-
ordinating on A Pareto dominates coordination on B. Unlike the New
York and the Battle of the Sexes game, one of equilibria is clearly ’bet-
ter’ for both players. We might therefore be tempted to regard (A,A)
as the more likely equilibrium.

2. However, lots of people typically choose strategy B in most experimen-
tal settings. Playing A seems too ’risky’ for many players.

3. Harsanyi-Selten developed the notion of risk-dominance. Assume that
you don’t know much about the other player and assign 50-50 prob-
ability to him playing A or B. Then playing A gives you utility -3 in
expectation while playing B gives you 7.5. Therefore, B risk-dominates
A.

4 Interpretations of NE

IDSDS is a constructive algorithm to predict play and does not assume that
players know the strategy choices of other players. In contrast, in a Nash
equilibrium players have precise beliefs about the play of other players, and
these beliefs are self-fulfilling. However, where do these beliefs come from?

There are several interpretations:

1. Play Prescription: Some outside party proposes a prescription of
how to play the game. This prescription is stable, i.e. no player has
an incentive to deviate from if she thinks the other players follow that
prescription.

2. Preplay communication: There is a preplay phase in which players
can communicate and agree on how to play the game. These agreements
are self-enforcing.

3. Rational Introspection: A NE seems a reasonable way to play a
game because my beliefs of what other players do are consistent with
them being rational. This is a good explanation for explaining NE in
games with a unique NE. However, it is less compelling for games with
multiple NE.
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4. Focal Point: Social norms, or some distinctive characteristic can in-
duce players to prefer certain strategies over others.

5. Learning Agents learn other players’ strategies by playing the same
game many time over.

6. Evolution: Agents are programmed to play a certain strategy and
are randomly matched against each other. Assume that agents do not
play NE initially. Occasionally ’mutations’ are born, i.e. players who
deviate from the majority play. If this deviation is profitable, these
agents will ’multiply’ at a faster rate than other agents and eventually
take over. Under certain conditions, this system converges to a state
where all agents play a Nash equilibrium, and mutating agents cannot
benefit from deviation anymore.

Remark 1 Each of these interpretations makes different assumptions about
the knowledge of players. For a play prescription it is sufficient that every
player is rational, and simply trusts the outside party. For rational introspec-
tion it has to be common knowledge that players are rational. For evolution
players do not even have to be rational.

Remark 2 Some interpretations have less problems in dealing with multi-
plicity of equilibria. If we believe that NE arises because an outside party
prescribes play for both players, then we don’t have to worry about multiplic-
ity - as long as the outside party suggests some Nash equilibrium, players
have no reason to deviate. Rational introspection is much more problematic:
each player can rationalize any of the multiple equilibria and therefore has
no clear way to choose amongst them.
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Lecture V: Mixed Strategies

Markus M. Möbius

February 24, 2004

• Gibbons, sections 1.3-1.3.A

• Osborne, chapter 4

1 The Advantage of Mixed Strategies

Consider the following Rock-Paper-Scissors game: Note that RPS is a zero-
sum game.

S

P

R

R P S

0,0 −1,1 1,−1

1,−1 0,0 −1,1

−1,1 1,−1 0,0

This game has no pure-strategy Nash equilibrium. Whatever pure strategy
player 1 chooses, player 2 can beat him. A natural solution for player 1 might
be to randomize amongst his strategies.

Another example of a game without pure-strategy NE is matching pen-
nies. As in RPS the opponent can exploit his knowledge of the other player’s
action.
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−1,1 1,−1

1,−1 −1,1H

T

H T

Fearing this what might the opponent do? One solution is to randomize
and play a mixed strategy. Each player could flip a coin and play H with
probability 1

2
and T with probability 1

2
.

Note that each player cannot be taken advantage of.

Definition 1 Let G be a game with strategy spaces S1,S2,..,SI . A mixed
strategy σi for player i is a probability distribution on Si i.e. for Si finite a
mixed strategy is a function σi : Si → <+ such that

∑
si∈Si

σi (si) = 1.

Several notations are commonly used for describing mixed strategies.

1. Function (measure): σ1 (H) = 1
2

and σ1 (T ) = 1
2

2. Vector: If the pure strategies are si1,..siNi
write (σi (si1) , .., σi (siNi

))
e.g.

(
1
2
, 1

2

)
.

3. 1
2
H + 1

2
T

Class Experiment 1 Three groups of two people. Play RPS with each other
30 times. Calculate frequency with which each strategy is being played.

• Players are indifferent between strategies if opponent mixes equally
between all three strategies.

• In games such as matching pennies, poker bluffing, football run/pass
etc you want to make the opponent guess and you worry about being
found out.

2



2 Mixed Strategy Nash Equilibrium

Write Σi (also ∆ (Si)) for the set of probability distributions on Si.
Write Σ for Σ1 × .. × ΣI . A mixed strategy profile σ ∈ Σ is an I-tuple

(σ1, .., σI) with σi ∈ Σi.
We write ui (σi, σ−i) for player i’s expected payoff when he uses mixed

strategy σi and all other players play as in σ−i.

ui (σi, σ−i) =
∑

si,s−iui(si,s−i)σi(si)σ−i(si)

(1)

Remark 1 For the definition of a mixed strategy payoff we have to assume
that the utility function fulfills the VNM axioms. Mixed strategies induce
lotteries over the outcomes (strategy profiles) and the expected utility of a
lottery allows a consistent ranking only if the preference relation satisfies
these axioms.

Definition 2 A mixed strategy NE of G is a mixed profile σ∗ ∈ Σ such that

ui

(
σ∗i , σ

∗
−i

) ≥ ui

(
σi, σ

∗
−i

)

for all i and all σi ∈ Σi.

3 Testing for MSNE

The definition of MSNE makes it cumbersome to check that a mixed profile
is a NE. The next result shows that it is sufficient to check against pure
strategy alternatives.

Proposition 1 σ∗ is a Nash equilibrium if and only if

ui

(
σ∗i , σ

∗
−i

) ≥ ui

(
si, σ

∗
−i

)

for all i and si ∈ Si.

Example 1 The strategy profile σ∗1 = σ∗2 = 1
2
H + 1

2
T is a NE of Matching

Pennies.

Because of symmetry is it sufficient to check that player 1 would not
deviate. If he plays his mixed strategy he gets expected payoff 0. Playing
his two pure strategies gives him payoff 0 as well. Therefore, there is no
incentive to deviate.

Note: Mixed strategies can help us to find MSNE when no pure strategy
NE exist.
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4 Finding Mixed Strategy Equilibria I

Definition 3 In a finite game, the support of a mixed strategy σi, supp (σi),
is the set of pure strategies to which σi assigns positive probability

supp (σi) = {si ∈ Si|σi (si) > 0}

Proposition 2 If σ∗ is a mixed strategy Nash equilibrium and s′i,s
′′
i ∈ supp (σ∗i )

then
ui

(
s′i, σ

∗
−i

)
= ui

(
s′′i , σ

∗
−i

)

Proof: Suppose not. Assume WLOG that

ui

(
s′i, σ

∗
−i

)
> ui

(
s′′i , σ

∗
−i

)

with s′i,s
′′
i ∈ supp (σ∗i ).

Define a new mixed strategy σ̂i for player i by

σ̂i (si) =





σ∗i (s′i) + σ∗i (s′′i ) if si = s′i
0 if si = s′′i
σ∗i (si) otherwise

We can calculate the gain from playing the modified stratgey:

ui

(
σ̂i, σ

∗
−i

) − ui

(
σ∗i , σ

∗
−i

)

=
∑
si∈Si

ui

(
si, σ

∗
−i

)
σ̂i (si)−

∑
si∈Si

ui

(
si, σ

∗
−i

)
σ∗i (si)

=
∑
si∈Si

ui

(
si, σ

∗
−i

)
[σ̂i (si)− σ∗i (si)]

= ui

(
s′i, σ

∗
−i

)
σ∗i (s′′i )− ui

(
s′′i , σ

∗
−i

)
σ∗i (s′′i )

> 0

Note that a mixed strategy NE is never strict.
The proposition suggests a process of finding MSNE.

1. Look at all possible supports for mixed equilibria.

2. Solve for probabilities and check if it works.
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Example 2 Find all the Nash equilibria of the game below.

D

U

L R

1,1 0,4

0,2 2,1

It is easy to see that this game has no pure strategy Nash equilibria. For
a mixed strategy Nash equilibrium to exist player 1 has to be indifferent
between strategies U and D and player 2 has to be indifferent between L and
R. Assume player 1 plays U with probability α and player 2 plays L with
probability β.

u1 (U, σ∗2) = u1 (D, σ∗2)

β = 2 (1− β)

u2 (L, σ∗1) = u2 (R, σ∗1)

α + 2 (1− α) = 4α + (1− α)

We can deduce that α = 1
4

and β = 2
3
. There is a unique mixed Nash

equilibrium with σ∗1 = 1
4
U + 3

4
D and σ∗2 = 2

3
L + 1

3
R

Remark 2 Recall the Battle of the Sexes experiments from last class. It
can be shown that the game has a mixed NE where each agent plays her
favorite strategy with probability 2

3
. This was not quite the proportion of

people playing it in class (but pretty close to the proportion of people choosing
it in the previous year)! In many instances of this experiment one finds that
men and women differed in their ’aggressiveness’. Does that imply that they
were irrational? No. In a mixed NE players are indifferent between their
strategies. As long as men and women are matched completely randomly
(i.e. woman-woman and man-man pairs are also possible) it only matters
how players mix in the aggregate! It does NOT matter if subgroups (i.e.
’men’ and ’women’) mix at different states, although it would matter if they
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would play only against players within their subgroup. Interestingly, that
suggests that letting women ’segregate’ into their own communities should
make them more aggressive, and men less aggressive. The term ’aggressive’
is a bit misleading because it does not result in bigger payoffs. However, you
could come up with a story of lexicographic preferences - people care first of
all about payoffs, but everything else equal they want to fit gender stereotypes
- so playing ’football’ is good for men’s ego.

5 Finding Mixed Strategy Equilibria II

Finding mixed NE in 2 by 2 games is relatively easy. It becomes harder
if players have more than two strategies because we have to start worrying
about supports. In many cases it is useful to exploit iterated deletion in
order to narrow down possible supports.

Proposition 3 Let σ∗ be a NE of G and suppose that σ∗ (si) > 0 then
si ∈ S∞i , i.e. strategy si is not removed by ISD.

Proof: see problem set 2

Having introduced mixed strategies we can even define a tighter notion of
IDSDS. Consider the next game. No player has a strategy which is strictly
dominated by another pure strategy. However, C for player 2 is strictly
dominated by 1

2
L + 1

2
R. Thus we would think that C won’t be used.

D

M

U

L C R

1,1 0,2 0,4

0,2 5,0 1,6

0,2 1,1 2,1

6



After we delete C we note that M is dominated by 2
3
D+ 1

3
U . Using the above

proposition we can conclude that the only Nash equilibria are the NE of the
2 by 2 game analyzed in the previous section. Since that game had a unique
mixed strategy equilibrium we can conclude that the only NE of the 3 by 3
game is σ∗1 = 1

4
U + 3

4
D and σ∗2 = 2

3
L + 1

3
R.

It is useful to adjust the formal definition of IDSDS and allow for mixed
strategy domination:

Definition 4 The set of strategy profiles surviving iterated strict dominance
is S∞ = S∞1 × S∞2 × ..× S∞I where

S∞i =
∞⋂

k=1

Sk
i

S0
i = Si

Sk+1
i =

{
si ∈ Sk

i | 6 ∃σi ∈ ∆
(
Sk

i

) |ui (σi, s−i) > ui (si, s−i)∀s−i ∈ Sk
−i

}

Remark 3 Recall the above 3 by 3 game. If we would look for possible mixed
NE with supports (U,M) and (L,C) respectively, we would find a potential NE
2
3
U + 1

3
M, 5

6
L+ 1

6
C. However, this is NOT a NE because player 2 would play

R instead.

Remark 4 In the RPS game we cannot reduce the set of strategies through
IDSDS. Therefore we have to check all possible supports and check if it works.

6 Finding Mixed Strategy Equilibria III

Definition 5 A correspondence F : A → B is a mapping which associates
to every element of a ∈ A a subset F (a) ⊂ B.

The mixed strategy best response correspondence for player i BRi :
Σ−i → Σi is defined by

BRi (σ−i) = arg max
σi∈Σi

ui (σi, σ−i)

Proposition 4 σ∗ is a Nash equilibrium if and only if σ∗i ∈ BRi

(
σ∗−i

)
for

all i.
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In the 2 by 2 game we have:

BR1 (βL + (1− β) R) =





U if β > 2
3

{αU + (1− α) D|α ∈ [0, 1]} if β = 2
3

D if β < 2
3

BR2 (αU + (1− α) D) =





L if α < 1
4

{βL + (1− β) R|β ∈ [0, 1]} if α = 1
4

R if α > 1
4

We can graph both correspondences to find the set of Nash equilibria.

7 Interpretation of Mixed NE

1. Sometimes players explicitly flip coins. That fits games like Poker,
soccer etc., where players have to randomize credibly.

2. Large populations of players with each player playing a fixed strategy
and random matching. That’s very related to the social norm expla-
nation of pure Nash equilibrium.

3. Payoff uncertainty (Harsanyi, purification). Roughly their argument
goes as follows in the matching penny game. There are two types of
players - those who get slightly higher payoff from playing heads, and
those who get higher payoff from getting tails (their preferences are
almost the same - think of one guy getting 1 dollar and the other guy
getting 1 + ε = 1.01 dollars from playing head). Also, we assume that
there is an equal probability that my opponent is of type 1 or type
2. In this circumstances no player loses from just playing her favorite
strategy (i.e. a pure strategy) because it will do best on average. To
show that this is a NE we have to introduce the notion of incomplete
information which we don’t do just yet. Harsanyi-Selten then let the
payoff uncertainty ε go to 0 such that the game in the limit approaches
the standard matching pennies. Players’ ’average’ strategies converge
to the mixed equilibrium.
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Lecture VI: Existence of Nash equilibrium

Markus M. Möbius

February 26, 2004

• Gibbons, sections 1.3B

• Osborne, chapter 4

1 Nash’s Existence Theorem

When we introduced the notion of Nash equilibrium the idea was to come
up with a solution concept which is stronger than IDSDS. Today we show
that NE is not too strong in the sense that it guarantees the existence of at
least one mixed Nash equilibrium in most games (for sure in all finite games).
This is reassuring because it tells that there is at least one way to play most
games.1

Let’s start by stating the main theorem we will prove:

Theorem 1 (Nash Existence)Every finite strategic-form game has a mixed-
strategy Nash equilibrium.

Many game theorists therefore regard the set of NE for this reason as the
lower bound for the set of reasonably solution concept. A lot of research has
gone into refining the notion of NE in order to retain the existence result
but get more precise predictions in games with multiple equilibria (such as
coordination games).

However, we have already discussed games which are solvable by IDSDS
and hence have a unique Nash equilibrium as well (for example, the two
thirds of the average game), but subjects in an experiment will not follow
those equilibrium prescription. Therefore, if we want to describe and predict

1Note, that a pure Nash equilibrium is a (degenerate) mixed equilibrium, too.
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the behavior of real-world people rather than come up with an explanation
of how they should play a game, then the notion of NE and even even IDSDS
can be too restricting.

Behavioral game theory has tried to weaken the joint assumptions of
rationality and common knowledge in order to come up with better theories
of how real people play real games. Anyone interested should take David
Laibson’s course next year.

Despite these reservation about Nash equilibrium it is still a very useful
benchmark and a starting point for any game analysis.

In the following we will go through three proofs of the Existence Theorem
using various levels of mathematical sophistication:

• existence in 2× 2 games using elementary techniques

• existence in 2× 2 games using a fixed point approach

• general existence theorem in finite games

You are only required to understand the simplest approach. The rest is for
the intellectually curious.

2 Nash Existence in 2× 2 Games

Let us consider the simple 2 × 2 game which we discussed in the previous
lecture on mixed Nash equilibria:

D

U

L R

1,1 0,4

0,2 2,1

We next draw the best-response curves of both players. Recall that player
1’s strategy can be represented by a single number α such that σ1 = αU +
(1− α)D while player 2’s strategy is σ2 = βL + (1− β)R.
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Let’s find the best-response of player 2 to player 1 playing strategy α:

u2(L, αU + (1− α)D) = 2− α

u2(R, αU + (1− α)D) = 1 + 3α (1)

Therefore, player 2 will strictly prefer strategy L iff 2 − α > 1 + 3α which
implies α < 1

4
. The best-response correspondence of player 2 is therefore:

BR2(α) =





1 if α < 1
4

[0, 1] if α = 1
4

0 if α > 1
4

(2)

We can similarly find the best-response correspondence of player 1:

BR1(β) =





0 if β < 2
3

[0, 1] if β = 2
3

1 if β > 2
3

(3)

We draw both best-response correspondences in a single graph (the graph is
in color - so looking at it on the computer screen might help you):

α

β

1/4 1

2/3

1

BR
2
(α) BR

1
(β)

We immediately see, that both correspondences intersect in the single point
α = 1

4
and β = 2

3
which is therefore the unique (mixed) Nash equilibrium of

the game.

3



What’s useful about this approach is that it generalizes to a proof that
any two by two game has at least one Nash equilibriu, i.e. its two best
response correspondences have to intersect in at least one point.

An informal argument runs as follows:

1. The best response correspondence for player 2 maps each α into at
least one β. The graph of the correspondence connects the left and
right side of the square [0, 1] × [0, 1]. This connection is continuous
- the only discontinuity could happen when player 2’s best response
switches from L to R or vice versa at some α∗. But at this switching
point player 2 has to be exactly indifferent between both strategies -
hence the graph has the value BR2(α

∗) = [0, 1] at this point and there
cannot be a discontinuity. Note, that this is precisely why we need
mixed strategies - with pure strategies the BR graph would generally
be discontinuous at some point.

2. By an analogous argument the BR graph of player 1 connects the upper
and lower side of the square [0, 1]× [0, 1].

3. Two lines which connect the left/right side and the upper/lower side
of the square respectively have to intersect in at least one point. Hence
each 2 by 2 game has a mixed Nash equilibrium.

3 Nash Existence in 2× 2 Games using Fixed

Point Argument

There is a different way to prove existence of NE on 2 × 2 games. The
advantage of this new approach is that it generalizes easily to general finite
games.

Consider any strategy profile (αU +(1−α)D, βL+(1−β)R) represented
by the point (α, β) inside the square [0, 1]× [0, 1]. Now imagine the following:
player 1 assumes that player 2 follows strategy β and player 2 assumes that
player 1 follows strategy α. What should they do? They should play their
BR to their beliefs - i.e. player 1 should play BR1(β) and player 2 should
play BR2(α). So we can imagine that the strategy profile (α, β) is mapped
onto (BR1(β), BR2(α)). This would describe the actual play of both players
if their beliefs would be summarizes by (α, β). We can therefore define a
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giant correspondence BR : [0, 1]× [0, 1] → [0, 1]× [0, 1] in the following way:

BR(α, β) = BR1(β)×BR2(α) (4)

The following figure illustrates the properties of the combined best-response
map BR:

α

β

1/4 1

2/3

1

BR
2
(α) BR

1
(β)

(α
1
,β

1
)

(BR
1
(β

1
),BR

2
(α

1
))

(α
2
,β

2
)

(BR
1
(β

2
),BR

2
(α

2
))

The neat fact about BR is that the Nash equilibria σ∗ are precisely the
fixed points of BR, i.e. σ∗ ∈ BR(σ∗). In other words, if players have beliefs
σ∗ then σ∗ should also be a best response by them. The next lemma follows
directly from the definition of mixed Nash equilibrium:

Lemma 1 A mixed strategy profile σ∗ is a Nash equilibrium if and only if it
is a fixed point of the BR correspondence, i.e. σ∗ ∈ BR (σ∗).

We therefore look precisely for the fixed points of the correspondence
BR which maps the square [0, 1]× [0, 1] onto itself. There is well developed
mathematical theory for these types of maps which we utilize to prove Nash
existence (i.e. that BR has at least one fixed point).

3.1 Kakutani’s Fixed Point Theorem

The key result we need is Kakutani’s fixed point theorem. You might have
used Brower’s fixed point theorem in some mathematics class. This is not
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sufficient for proving the existence of nash equilibria because it only applies
to functions but not to correspondences.

Theorem 2 Kakutani A correspondence r : X → X has a fixed point
x ∈ X such that x ∈ r (x) if

1. X is a compact, convex and non-empty subset of <n.

2. r (x) is non-empty for all x.

3. r (x) is convex for all x.

4. r has a closed graph.

There are a few concepts in this definition which have to be defined:
Convex Set: A set A ⊆ <n is convex if for any two points x, y ∈ A the

straight line connecting these two points lies inside the set as well. Formally,
λx + (1− λ) y ∈ A for all λ ∈ [0, 1].

Closed Set: A set A ⊆ <n is closed if for any converging sequence
{xn}∞n=1 with xn → x∗ as n → ∞ we have x∗ ∈ A. Closed intervals such
as [0, 1] are closed sets but open or half-open intervals are not. For example
(0, 1] cannot be closed because the sequence 1

n
converges to 0 which is not in

the set.
Compact Set: A set A ⊆ <n is compact if it is both closed and bounded.

For example, the set [0, 1] is compact but the set [0,∞) is only closed but
unbounded, and hence not compact.

Graph: The graph of a correspondence r : X → Y is the set {(x, y) |y ∈ r (x)}.
If r is a real function the graph is simply the plot of the function.

Closed Graph: A correspondence has a closed graph if the graph of the
correspondence is a closed set. Formally, this implies that for a sequence of
point on the graph {(xn, yn)}∞n=1 such that xn → x∗ and yn → y∗ as n →∞
we have y∗ ∈ r (x∗).2

It is useful to understand exactly why we need each of the conditions in
Kakutani’s fixed point theorem to be fulfilled. We discuss the conditions by
looking correspondences on the real line, i.e. r : < → <. In this case, a fixed
point simply lies on the intersection between the graph of the correspondence
and the diagonal y = x. Hence Kakutani’s fixed point theorem tells us that

2If the correspondence is a function then the closed graph requirement is equivalent to
assuming that the function is continuous. It’s easy to see that a continuous function has
a closed graph. For the reverse, you’ll need Baire’s category theorem.
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a correspondence r : [0, 1] → [0, 1] which fulfills the conditions above always
intersects with the diagonal.

3.1.1 Kakutani Condition I: X is compact, convex and non-empty.

Assume X is not compact because it is not closed - for example X = (0, 1).
Now consider the correspondence r(x) = x2 which maps X into X. However,
it has no fixed point. Now consider X non-compact because it is unbounded
such as X = [0,∞) and consider the correspondence r(x) = 1 + x which
maps X into X but has again no fixed point.

If X is empty there is clearly no fixed point. For convexity of X look at
the example X = [0, 1

3
]∪ [2

3
, 1] which is not convex because the set has a hole.

Now consider the following correspondence (see figure below):

r(x) =

{
3
4

if x ∈ [0, 1
3
]

1
4

if x ∈ [2
3
, 1]

(5)

This correspondence maps X into X but has no fixed point again.

x

y

1/3 2/3 1

3/4

1/4

From now on we focus on correspondences r : [0, 1] → [0, 1] - note that [0, 1]
is closed and bounded and hence compact, and is also convex.
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3.1.2 Kakutani Condition II: r(x) is non-empty.

If r(x) could be empty we could define a correspondence r : [0, 1] → [0, 1]
such as the following:

r(x) =





3
4

if x ∈ [0, 1
3
]

∅ if x ∈ [1
3
, 2

3
]

1
4

if x ∈ [2
3
, 1]

(6)

As before, this correspondence has no fixed point because of the hole in the
middle.

3.1.3 Kakutani Condition III: r(x) is convex.

If r(x) is not convex, then the graph does not have to have a fixed point as
the following example of a correspondence r : [0, 1] → [0, 1] shows:

r(x) =





1 if x < 1
2[

0, 1
3

] ∪ [
2
3
, 1

]
if x = 1

2

0 if x > 1
2

(7)

x

y

1/2 1

1

The graph is non-convex because r(1
2
) is not convex. It also does not have a

fixed point.
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3.1.4 Kakutani Condition IV: r(x) has a closed graph.

This condition ensures that the graph cannot have holes. Consider the follow-
ing correspondence r : [0, 1] → [0, 1] which fulfills all conditions of Kakutani
except (4):

r(x) =





1
2

if x < 1
2[

1
4
, 1

2

)
if x = 1

2
1
4

if x > 1
2

(8)

x

y

1/2 1

1

Note, that r(1
2
) is the convex set

[
1
4
, 1

2

)
but that this set is not closed. Hence

the graph is not closed. For example, consider the sequence xn = 1
2

and
yn = 1

2
− 1

n+2
for n ≥ 1. Clearly, we have yn ∈ r(xn). However, xn → x∗ = 1

2

and yn → y∗ = 1
2

but y∗ /∈ r(x∗). Hence the graph is not closed.

3.2 Applying Kakutani

We now apply Kakutani to prove that 2× 2 games have a Nash equilibrium,
i.e. the giant best-response correspondence BR has a fixed point. We denote
the strategies of player 1 with U and D and the strategies of player 2 with
L and R.
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We have to check (a) that BR is a map from some compact and convex
set X into itself, and (b) conditions (1) to (4) of Kakutani.

• First note, that BR : [0, 1] × [0, 1] → [0, 1] × [0, 1]. The square X =
[0, 1]× [0, 1] is convex and compact because it is bounded and closed.

• Now check condition (2) of Kakutani - BR(σ) is non-empty. This is
true if BR1(σ2) and BR2(σ1) are non-empty. Let’s prove it for BR1 -
the proof for BR2 is analogous. Player 1 will get the following payoff
u1,β(α) from playing strategy α if the other player plays β:

u1,β(α) = αβu1(U,L) + α(1− β)u1(U,R) +

+ (1− α)βu1(D, L) + (1− α)(1− β)u1(D,R) (9)

The function u1,β is continuous in α. We also know that α ∈ [0, 1] which
is a closed interval. Therefore, we know that the continuous function
u1,β reaches its maximum over that interval (standard min-max result
from real analysis - continuous functions reach their minimum and max-
imum over closed intervals). Hence there is at least one best response
α∗ which maximizes player 1’s payoff.

• Condition (3) requires that if player 1 has tow best responses α∗1U +
(1−α∗1)D and α∗2U +(1−α∗2)D to player 2 playing βL+(1−β)R then
the strategy where player 1 chooses U with probability λα∗1 +(1−λ)α∗2
for some 0 < λ < 1 is also a best response (i.e. BR1(β) is convex).
But since both the α1 and the α2 strategy are best responses of player
1 to the same β strategy of player 2 they also have to provide the same
payoffs to player 1. But this implies that if player 1 plays strategy α1

with probability λ and α2 with probability 1 − λ she will get exactly
the same payoff as well. Hence the strategy where she plays U with
probability λα∗1+(1−λ)α∗2 is also a best response and her best response
set BR1(β) is convex.

• The final condition (4) requires that BR has a closed graph. To show
this consider a sequence σn = (αn, βn) of (mixed) strategy profiles and
σ̃n = (α̃n, β̃n) ∈ BR (σn). Both sequences are assumed to converge to
σ∗ = (α∗, β∗) and σ̃∗ = (α̃∗, β̃∗), respectively. We now want to show
that σ̃ ∈ BR (σ) to prove that BR has a closed graph.

We know that for player 1, for example, we have

u1 (α̃n, βn) ≥ u1 (α′, βn)
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for any α′ ∈ [0, 1]. Note, that the utility function is continuous in both
arguments because it is linear in α and β. Therefore, we can take the
limit on both sides while preserving the inequality sign:

u1 (α̃∗, β∗) ≥ u2 (α′, β)

for all α′ ∈ [0, 1]. This shows that α̃∗ ∈ BR1 (β) and therefore σ̃∗ ∈
BR (σ∗). Hence the graph of the BR correspondence is closed.

Therefore, all four Kakutani conditions apply and the giant best-response
correspondence BR has a fixed point, and each 2 × 2 game has a Nash
equilibrium.

4 Nash Existence Proof for General Finite

Case

Using the fixed point method it is now relatively easy to extend the proof
for the 2 × 2 case to general finite games.The biggest difference is that we
cannot represent a mixed strategy any longer with a single number such as α.
If player 1 has three pure strategies A1,A2 and A3, for example, then his set
of mixed strategies is represented by two probabilities - for example, (α1, α2)
which are the probabilities that A1 and A2 are chosen. The set of admissible
α1 and α2 is described by:

Σ1 = {(α1, α2)|0 ≤ α1, α2 ≤ 1 and α1 + α2 ≤ 1} (10)

The definition of the set of mixed strategies can be straightforwardly ex-
tended to games where player 1 has a strategy set consisting of n pure
strategies A1,..,An. Then we need n− 1 probabilities α1,..,αn−1 such that:

Σ1 = {(α1, .., αn−1)|0 ≤ α1, .., αn−1 ≤ 1 and α1 + .. + αn−1 ≤ 1} (11)

So instead of representing strategies on the unit interval [0, 1] we have to
represent as elements of the simplex Σ1.

Lemma 2 The set Σ1 is compact and convex.

Proof: It is clearly convex - if you mix between two mixed strategies you get
another mixed strategy. The set is also compact because it is bounded
(all |αi| ≤ 1) and closed. To see closedness take a sequence (αi

1, .., α
i
n−1)

of elements of Σ1 which converges to (α∗1, ..). Then we have α∗i ≥ 0 and∑n−1
i=1 α∗i ≤ 1 because the limit preserves weak inequalities. QED
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We can now check that all conditions of Kakutani are fulfilled in the gen-
eral finite case. Checking them is almost 1-1 identical to checking Kakutani’s
condition for 2× 2 games.

Condition 1: The individual mixed strategy sets Σi are clearly non-
empty because every player has at least one strategy. Since Σi is compact
Σ = Σ1×...×ΣI is also compact. Hence the BR correspondence BR : Σ → Σ
acts on a compact and convex non-empty set.

Condition 2: For each player i we can calculate his utiltiy ui,σ−i
(σi) for

σi ∈ Σi. Since Σi is compact and ui,σ−i
is continuous the set of payoffs is also

compact and hence has a maximum. Therefore, BRi(Σi) is non-empty.
Condition 3: Assume that σ1

i and σ2
i are both BR of player i to σ−i.

Both strategies have to give player i equal payoffs then and any linear com-
bination of these two strategies has to be a BR for player i, too.

Condition 4: Assume that σn is a sequence of strategy profiles and
σ̃n ∈ BR (σn). Both sequences converge to σ∗ and σ̃∗, respectively. We
know that for each player i we have

ui

(
σ̃n

i , σn
−i

) ≥ ui

(
σ′i, σ

n
−i

)

for all σ′i ∈ Σi. Note, that the utility function is continuous in both arguments
because it is linear.3 Therefore, we can take the limit on both sides while
preserving the inequality sign:

ui

(
σ̃∗i , σ

∗
−i

) ≥ ui

(
σ′i, σ

∗
−i

)

for all σ′i ∈ Σi. This shows that σ̃∗i ∈ BRi

(
σ∗−i

)
and therefore σ̃∗ ∈ BR (σ∗).

Hence the graph of the BR correspondence is closed.
So Kakutani’s theorem applies and the giant best-response map BR has

a fixed point.

3It is crucial here that the set of pure strategies is finite.
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Lecture VII: Common Knowledge

Markus M. Möbius

March 4, 2004

This is the one of the two advanced topics (the other is learning) which
is not discussed in the two main texts. I tried to make the lecture notes
self-contained.

• Osborne and Rubinstein, sections 5.1,5.2,5.4

Today we formally introduce the notion of common knowledge and discuss
the assumptions underlying players’ knowledge in the two solution concepts
we discussed so far - IDSDS and Nash equilibrium.

1 A Model of Knowledge

There is a set of states of nature Ω = {ω1, ω2, .., ωn} which represent the
uncertainty which an agent faces when making a decision.

Example 1 Agents 1, 2 have a prior over the states of nature

Ω = {ω1 = It will rain today, ω2 = It will be cloudy today,

ω3 = It will be sunny today }

where each of the three events is equally likely ex ante.

The knowledge of every agent i is represented by an information partition
Hi of the set Ω.

Definition 1 An information partition Hi is a collection {hi (ω) |ω ∈ Ω} of
disjoint subsets of Ω such that
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• (P1) ω ∈ hi (ω),

• (P2) If ω′ ∈ hi (ω) then hi (ω
′) = hi (ω).

Note, that the subsets hi (ω) span Ω. We can think of hi (ω) as the knowledge
of agent i if the state of nature is in fact ω. Property P1 ensures that the true
state of nature ω is an element of an agent’s information set (or knowledge) -
this is called the axiom of knowledge. Property P2 is a consistency criterion.
Assume for example, that ω′ ∈ hi (ω) and that there is a state ω′′ ∈ hi (ω

′)
but ω′′ 6∈ hi (ω). Then in the state of nature is ω the decision-maker could
argue that because ω′′ is inconsistent with his information the true state can
not be ω′.

Example 1 (cont.) Agent 1 has the information partition

H1 = {{ω1, ω2} , {ω3}}

So the agent has good information if the weather is going to be sunny but
cannot distinguish between bad weather.

We next define a knowledge function K.

Definition 2 For any event E (a subset of Ω) we have

K (E) = {ω ∈ Ω|hi (ω) ⊆ E} .

So the set K (E) is the collection of all states in which the decision maker
knows E.

We are now ready to define common knowledge (for simplicity we only
consider two players).

Definition 3 Let K1 and K2 be the knowledge functions of both players. An
event E ⊆ Ω is common knowledge between 1 and 2 in the state ω ∈ Ω if ω if
a member of every set in the infinite sequence K1 (E), K2 (E), K1 (K2 (E)),
K2 (K1 (E)) and so on.

This definition implies that player 1 and 2 knows E, they know that the
other player knows it, and so on.

There is an equivalent definition of common knowledge which is frequently
easier to work with.
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Definition 4 An event F ⊆ Ω is self-evident between both players if for
all ω ∈ F we have hi (ω) ⊆ F for i = 1, 2. An event E ⊆ Ω is common
knowledge between both players in the state ω ∈ Ω if there is a self-evident
event F for which ω ∈ F ⊆ E.

Example 1 (cont.) Agent 2 has information function

H2 = {{ω1} , {ω2} , {ω3}}
In this case the event E = {ω1, ω2} is common knowledge if the state of nature
is ω1 or ω2. Both definition can be applied - E survives iterated deletion, but
is also self-evident.

We finally show that both definitions of common knowledge are equiva-
lent. We need the next proposition first.

Proposition 1 The following are equivalent:

1. Ki (E) = E for i = 1, 2

2. E is self evident between 1 and 2.

3. E is a union of members of the partition induced by Hi for i = 1, 2.

Proof: Assume a). Then for every ω ∈ E we have hi (ω) ⊆ E and b) follows.
c) follows because immediately. c) implies a).

We can now prove the following theorem.

Theorem 1 Definitions 3 and 4 are equivalent.

Proof: Assume that the event E is common knowledge in state ω according
to definition 3. First note, that

E ⊇ Ki (E) ⊇ Kj (Ki (E)) ...

Because Ω is finite and ω is a member of those subsets the infinite
regression must eventually produce a set F such that Ki (F ) = F .
Therefore, F is self-evident and we are done.

Next assume that the event E is common knowledge in state ω accord-
ing to definition 4. Then F ⊆ E, Ki (F ) = F ⊆ Ki (E) etc, and F is a
member of every of the regressive subsets Ki (Kj (...E...)) and so is ω.
This proves the theorem.
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2 Dirty Faces

We have played the game in class. Now we are going to analyze it by using
the mathematical language we just developed. Recall, that any agent can
only see the faces of all n− 1 other agents but not her own. Furthermore, at
least one face is dirty.

First of all we define the states of nature Ω. If there are n players there
are 2n − 1 possible states (since all faces clean cannot be a state of nature).
It’s convenient to denote the states by the n-tuples ω = (C,C,D, .., C). We
also denote the number of dirty faces with |ω| and note that |ω| ≥ 1 by
assumption (there is at least one dirty face).

The initial information set of each agent in some state of nature ω has at
most two elements. The agent knows the faces of all other agents ω (−i) but
does not know if she has a clean or dirty face, i.e. hi (ω) = {(C, ω (−i)) , (D, ω (−i))}.
Initially, all agents information set has two elements except in the case |ω| = 1
and one agent sees only clean faces - then she know for sure that she has a
dirty face because all clean is excluded. You can easily show that the event
”There is at least one dirty face” is common knowledge as you would expect.

The game ends when at least player knows the state of the world for sure,
i.e. her knowledge partition hi(ω) consists of a single element. In the first
this will only be the case if the state of world is such that only a single player
has a dirt face.

What happens if no agent raises her hand in the first period? All agents
update their information partition and exclude all states of nature with just
one dirty face. All agents who see just one dirty face now know for sure the
state of nature (they have a dirty face!). They raise their hand and the game
is over. Otherwise, all agents can exclude states of nature with at most two
dirty faces. Agents who see two dirty faces now know the state of nature for
sure (they have a dirty face!). etc.

The state of nature with k dirty faces therefore gets revealed at stage k
of the game. At that point all guys with dirty faces know the state of nature
for sure.

Question: What happens if it is common knowledge that neither all faces
are clean, nor all faces are dirty?

Remark 1 The game crucially depends on the fact that it is common knowl-
edge that at least one agent has a dirty face. Assume no such information
would be known - so the state of the world where all faces are clean would
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be a possible outcome. Then no agent in the first round would ever know for
sure if she had a dirty face. Hence the information partition would never get
refined after any number of rounds.

3 Coordinated Attack

This story shows that ’almost common knowledge’ can be very different from
common knowledge.

Two divisions of an army are camped on two hilltops overlooking a com-
mon valley. In the valley waits the enemy. If both divisions attack simultane-
ously they will win the battle, whereas if only one division attacks it will be
defeated. Neither general will attack unless he is sure that other will attack
with him.

Commander A is in peace negotiations with the enemy. The generals
agreed that if the negotiations fail, commander A will send a message to
commander B with an attack plan. However, there is a small probability ε
that the messenger gets intercepted and the message does not arrive. The
messenger takes one hour normally. How long will it take to coordinate on
the attack?

The answer is: never! Once commander B receives the message he has to
confirm it - otherwise A is not sure that he received it and will not attack.
But B cannot be sure that A receives his confirmation and will not attack
until he receives another confirmation from A. etc. The messenger can run
back and forth countless times before he is intercepted but the generals can
never coordinate with certainty.

Let’s define the state of nature to be (n, m) if commander A sent n
messages and received n−1 confirmation from commander B, and commander
B sent m messages and received m− 1 confirmations. We also introduce the
state of nature (0, 0). In that state the peace negotiations have succeeded,
and no attack is scheduled.1

The information partition of commander A is

HA = {{(0, 0)} , {(1, 0), (1, 1)} , {(2, 1), (2, 2)} , ..} . (1)

1As was pointed out by an alert student in class this state is necessary to make this
exercise interesting. Otherwise, the generals could agree on an attack plan in advance,
and no communication would be necessary at all - the attack would be common knowledge
already.
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The information partition of commander B is

HB = {{(0, 0), (1, 0)} , {(1, 1), (2, 1)} , ..} . (2)

Both commanders only attack in some state of the world ω if it is common
knowledge that commander B has sent a message, i.e. n ≥ 1 (the negotiations
have failed and an attack should occur). However, this event can never
be common knowledge for any state of nature (i.e. after any sequence of
messages) because there is no self-evident set F contained in the event E.
This is easy to verify: take the union of any collection of information sets of
commander A (only those can be candidates for a self-evident F ). Then ask
yourself whether such a set can be also the union of a collection of information
sets of commander B. The answer is no - there will always some information
set of B which ’stick out’ at either ’end’ of the candidate set F.
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Lecture VIII: Learning

Markus M. Möbius

March 10, 2004

Learning and evolution are the second set of topics which are not discussed
in the two main texts. I tried to make the lecture notes self-contained.

• Fudenberg and Levine (1998), The Theory of Learning in Games, Chap-
ter 1 and 2

1 Introduction

What are the problems with Nash equilibrium? It has been argued that Nash
equilibrium are a reasonable minimum requirement for how people should
play games (although this is debatable as some of our experiments have
shown). It has been suggested that players should be able to figure out
Nash equilibria starting from the assumption that the rules of the game, the
players’ rationality and the payoff functions are all common knowledge.1 As
Fudenberg and Levine (1998) have pointed out, there are some important
conceptual and empirical problems associated with this line of reasoning:

1. If there are multiple equilibria it is not clear how agents can coordinate
their beliefs about each other’s play by pure introspection.

2. Common knowledge of rationality and about the game itself can be
difficult to establish.

1We haven’t discussed the connection between knowledge and Nash equilibrium. As-
sume that there is a Nash equilibrium σ∗ in a two player game and that each player’s
best-response is unique. In this case player 1 knows that player 2 will play σ∗2 in response
to σ∗1 , player 2 knows that player 1 knows this etc. Common knowledge is important for
the same reason that it matters in the coordinated attack game we discussed earlier. Each
player might be unwilling to play her prescribed strategy if she is not absolutely certain
that the other play will do the same.
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3. Equilibrium theory does a poor job explaining play in early rounds of
most experiments, although it does much better in later rounds. This
shift from non-equilibrium to equilibrium play is difficult to reconcile
with a purely introspective theory.

1.1 Learning or Evolution?

There are two main ways to model the processes according to which players
change their strategies they are using to play a game. A learning model is
any model that specifies the learning rules used by individual players and
examines their interaction when the game (or games) is played repeatedly.
These types of models will be the subject of today’s lecture.

Learning models quickly become very complex when there are many play-
ers involved. Evolutionary models do not specifically model the learning
process at the individual level. The basic assumption there is that some un-
specified process at the individual level leads the population as a whole to
adopt strategies that yield improved payoffs. These type of models will the
subject of the next few lectures.

1.2 Population Size and Matching

The natural starting point for any learning (or evolutionary) model is the
case of fixed players. Typically, we will only look at 2 by 2 games which
are played repeatedly between these two fixed players. Each player faces the
task of inferring future play from the past behavior of agents.

There is a serious drawback from working with fixed agents. Due to
the repeated interaction in every game players might have an incentive to
influence the future play of their opponent. For example, in most learning
models players will defect in a Prisoner’s dilemma because cooperation is
strictly dominated for any beliefs I might hold about my opponent. However,
if I interact frequently with the same opponent, I might try to cooperate in
order to ’teach’ the opponent that I am a cooperator. We will see in a future
lecture that such behavior can be in deed a Nash equilibrium in a repeated
game.

There are several ways in which repeated play considerations can be as-
sumed away.

1. We can imagine that players are locked into their actions for quite
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a while (they invest infrequently, can’t build a new factory overnight
etc.) and that their discount factors (the factor by which they weight
the future) is small compared that lock-in length. It them makes sense
to treat agents as approximately myopic when making their decisions.

2. An alternative is to dispense with the fixed player assumption, and
instead assume that agents are drawn from a large population and are
randomly matched against each other to play games. In this case, it is
very unlikely that I encounter a recent opponent in a round in the near
future. This breaks the strategic links between the rounds and allows
us to treat agents as approximately myopic again (i.e. they maximize
their short-term payoffs).

2 Cournot Adjustment

In the Cournot adjustment model two fixed players move sequentially and
choose a best response to the play of their opponent in the last period.

The model was originally developed to explain learning in the Cournot
model. Firms start from some initial output combination (q0

1, q
0
2). In the

first round both firms adapt their output to be the best response to q0
2. They

therefore play (BR1 (q0
2) , BR2 (q0

1)).
This process is repeated and it can be easily seen that in the case of linear

demand and constant marginal costs the process converges to the unique
Nash equilibrium. If there are several Nash equilibria the initial conditions
will determine which equilibrium is selected.

2.1 Problem with Cournot Learning

There are two main problems:

• Firms are pretty dim-witted. They adjust their strategies today as if
they expect firms to play the same strategy as yesterday.

• In each period play can actually change quite a lot. Intelligent firms
should anticipate their opponents play in the future and react accord-
ingly. Intuitively, this should speed up the adjustment process.
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Cournot adjustment can be made more realistic by assuming that firms
are ’locked in’ for some time and that they move alternately. Firms 1 moves
in period 1,3,5,... and firm 2 moves in periods 2,4,6,.. Starting from some
initial play (q0

1, q
0
2), firms will play (q1

1, q
0
2) in round 1 and (q1

1, q
2
2) in round 2.

Clearly, the Cournot dynamics with alternate moves has the same long-run
behavior as the Cournot dynamics with simultaneous moves.

Cournot adjustment will be approximately optimal for firms if the lock-
in period is large compared to the discount rate of firms. The less locked-in
firms are the smaller the discount rate (the discount rate is the weight on
next period’s profits).

Of course, the problem with the lock-in interpretation is the fact that it is
not really a model of learning anymore. Learning is irrelevant because firms
choose their optimal action in each period.

3 Fictitious Play

In the process of fictitious play players assume that their opponents strategies
are drawn from some stationary but unknown distribution. As in the Cournot
adjustment model we restrict attention to a fixed two-player setting. We also
assume that the strategy sets of both players are finite.
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In fictitious play players choose the best response to their assessment of
their opponent’s strategy. Each player has some exogenously given weighting
function κ0

i : S−i → <+. After each period the weights are updated by adding
1 to each opponent strategy each time is has been played:

κt
i (s−i) =

{
κt−1

i (s−i) if s−i 6= st−1
−i

κt−1
i (s−i) + 1 if s−i = st−1

−i

Player i assigns probability γt
i (s−i) to strategy profile s−i:

γt
i (s−i) =

κt
i (s−i)∑

s̃−i∈S−i
κt

i (s̃−i)

The player then chooses a pure strategy which is a best response to his
assessment of other players’ strategy profiles. Note that there is not neces-
sarily a unique best-response to every assessment - hence fictitious play is
not always unique.

We also define the empirical distribution dt
i (si) of each player’s strategies

as

dt
i (si) =

∑t
t̃=0 I t̃ (si)

t

The indicator function is set to 1 if the strategy has been played in period t̃
and 0 otherwise. Note, that as t →∞ the empirical distribution dt

j of player
j’s strategies approximate the weighting function κt

i (since in a two player
game we have j = −i).

Remark 1 The updating of the weighting function looks intuitive but also
somewhat arbitrary. It can be made more rigorous in the following way.
Assume, that there are n strategy profiles in S−i and that each profile is
played by player i’s opponents’ with probability p (s−i). Agent i has a prior
belief according to which these probabilities are distributed. This prior is
a Dirichlet distribution whose parameters depend on the weighting function.
After each round agents update their prior: it can be shown that the posterior
belief is again Dirichlet and the parameters of the posterior depend now on
the updated weighting function.

3.1 Asymptotic Behavior

Will fictitious play converge to a Nash equilibrium? The next proposition
gives a partial answer.
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Proposition 1 If s is a strict Nash equilibrium, and s is played at date t in
the process of fictitious play, s is played at all subsequent dates. That is, strict
Nash equilibria are absorbing for the process of fictitious play. Furthermore,
any pure-strategy steady state of fictitious play must be a Nash equilibrium.

Proof : Assume that s = (si, sj) is played at time t. This implies that si is
a best-response to player i’s assessment at time t. But his next period
assessment will put higher relative weight on strategy sj. Because si is
a BR to sj and the old assessment it will be also a best-response to the
updated assessment. Conversely, if fictitious play gets stuck in some
pure steady state then players’ assessment converge to the empirical
distribution. If the steady state is not Nash players would eventually
deviate.

A corollary of the above result is that fictitious play cannot converge to
a pure steady state in a game which has only mixed Nash equilibria such as
matching pennies.

−1,1 1,−1

1,−1 −1,1H

T

H T

Assume that both players have initial weights weights (1.5,2) and (2,1.5).
Then fictitious play cycles as follows: In the first period, 1 and 2 play T, so
the weights the next period are (1.5,3) and (2, 2.5). Then 1 plays T and 2
plays H for the next two periods, after which 1’s weights are (3.5,3) and 2’s
are (2,4.5). At this point 1 switches to H, and both players play H for the
next three periods, at which point 2 switches to T, and so on. It may not be
obvious, but although the actual play in this example cycles, the empirical
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distribution over each player’s strategies are converging to
(

1
2
, 1

2

)
- this is

precisely the unique mixed Nash equilibrium.
This observation leads to a general result.

Proposition 2 Under fictitious play, if the empirical distributions over each
player’s choices converge, the strategy profile corresponding to the product of
these distributions is a Nash equilibrium.

Proof : Assume that there is a profitable deviation. Then in the limit at
least one player should deviate - but this contradicts the assumption
that strategies converge.

These results don’t tell us when fictitious play converges. The next the-
orem does precisely that.

Theorem 1 Under fictitious play the empirical distributions converge if the
stage has generic payoffs and is 2 2, or zero sum, or is solvable by iterated
strict dominance.

We won’t prove this theorem in this lecture. However, it is intuitively clear
why fictitious play observes IDSDS. A strictly dominated strategy can never
be a best response. Therefore, in the limit fictitious play should put zero
relative weight on it. But then all strategies deleted in the second step can
never be best responses and should have zero weight as well etc.

3.2 Non-Convergence is Possible

Fictitious play does not have to converge at all. An example for that is due
to Shapley.
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D

M

T

L M R

0,0 1,0 0,1

0,1 0,0 1,0

1,0 0,1 0,0

The unique mixed NE of the game is s1 = s2 =
(

1
3
, 1

3
, 1

3

)
.

If the initial play is (T, M) then the sequence becomes (T, M), (T, R),
(M, R), (M, L), (D, L), (D, M), (T, M).

One can show that the number of time each profile is played increases at
a fast enough rate such that the play never converges. Also note, that the
diagonal entries are never played.

3.3 Pathological Convergence

Convergence in the empirical distribution of strategy choices can be mis-
leading even though the process converges to a Nash equilibrium. Take the
following game:
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B

A

A B

0,0 1,1

1,1 0,0

Assume that the initial weights are
(
1,
√

2
)

for both players. In the first
period both players think the other will play B, so both play A. The next pe-
riod the weights are

(
2,
√

2
)
, and both play B; the outcome is the alternating

sequence (B, B), (A, A), (B, B), and so on. The empirical frequencies of each
player’s choices converge to 1/2, 1/2, which is the Nash equilibrium. The
realized play is always on the diagonal, however, and both players receive
payoff 0 each period. Another way of putting this is that the empirical joint
distribution on pairs of actions does not equal the product of the two marginal
distributions, so the empirical joint distribution corresponds to correlated as
opposed to independent play.

This type of correlation is very appealing. In particular, agents don’t seem
to be smart enough to recognize cycles which they could exploit. Hence the
attractive property of convergence to a Nash equilibrium can be misleading
if the equilibrium is mixed.
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Lecture IX: Evolution

Markus M. Möbius

March 10, 2004

Learning and evolution are the second set of topics which are not discussed
in the two main texts. I tried to make the lecture notes self-contained.

• Fudenberg and Levine (1998), The Theory of Learning in Games, Chap-
ter 1 and 2

1 Introduction

For models of learning we typically assume a fixed number of players who
find out about each other’s intentions over time. In evolutionary models the
process of learning is not explicitly modeled. Instead, we assume that strate-
gies which do better on average are played more often in the population over
time. The biological explanation for this is that individuals are genetically
programmed to play one strategy and their reproduction rate depends on
their fitness, i.e. the average payoff they obtain in the game. The economic
explanation is that there is social learning going on in the background -
people find out gradually which strategies do better and adjust accordingly.
However, that adjustment process is slower than the rate at which agents
play the game.

We will focus initially on models with random matching: there are N
agents who are randomly matched against each other over time to play a
certain game. Frequently, we assume that N as infinite. We have discussed
in the last lecture that random matching gives rise to myopic play because
there are no repeated game concerns (I’m unlikely to ever encounter my
current opponent again).

We will focus on symmetric n by n games for the purpose of this course.
In a symmetric game each player has the same strategy set and the payoff
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matrix satisfies ui (si, sj) = uj (sj, si) for each player i and j and strategies
si, sj ∈ Si = Sj = {s1, .., sn}. Many games we encountered so far in the
course are symmetric such as the Prisoner’s Dilemma, Battle of the Sexes,
Chicken and all coordination games. In symmetric games both players face
exactly the same problem and their optimal strategies do not depend on
whether they play the role of player 1 or player 2.

An important assumption in evolutionary models is that each agent plays
a fixed pure strategy until she dies, or has an opportunity to learn and about
her belief. The game is fully specified if we know the fraction of agents
who play strategy s1, s2, .., sn which we denote with x1, x2, .., xn such that∑n

i=1 xi = 1.

2 Mutations and Selection

Every model of evolution relies on two key concepts - a mutation mechanism
and a selection mechanism. We have already discussed selection - strategies
spread if they give above average payoffs. This captures social learning in a
reduced form.

Mutations are important to add ’noise’ to the system (i.e. ensure that
xi > 0 at all times) and prevent it from getting ’stuck’. For example, in
a world where players are randomly matched to play a Prisoner’s Dilemma
mutations make sure that it will never be the case that all agents cooperate or
all agents defect because there will be random mutations pushing the system
away from the two extremes.1

3 Replicator Dynamics

The replicator dynamics is one particular selection mechanism which captures
the notion that strategies with above average payoff should spread in the
population. Typically, the replicator dynamics is modelled without allowing
for mutations - the dynamics therefore becomes deterministic.

Since the stage game is symmetric we know that u (si, sj) = u1 (si, sj) =
u2 (sj, si) . The average payoff of strategy si for a player is u (si, x) since he

1If we start from an all-cooperating state, mutating agents will defect and do better.
Hence they spread, and finally take over. Without mutations the system might be ’stuck’
in the all-cooperating state.
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is randomly matched with probability xj against agents playing sj (x =
(x1, x2, .., xn)). The average payoff of all strategies is

∑n
i=1 xiu (si, x) =

u (x, x).
Strategy si does better than the average strategy if u (si, x) > u (x, x),

and worse otherwise. A minimum requirement for a selection mechanism is
that sgn (ẋi (t)) = sgn [u (si, x)− u (x, x)]. The share xi increases over time
if and only if strategy si does better than average. The replicator dynamics
is one particular example:

Definition 1 In the replicator dynamics the share xi of the population play-
ing strategy si evolves over time according to:

ẋi

xi

= u (si, x)− u (x, x)

If xi = 0 at time 0 then we have xi = 0 at all subsequent time periods: if
nobody plays strategy si then the share of population playing it can neither
decrease not increase.

The next proposition makes sure that the definition is consistent (i.e.
population share always sum up to 1).

Proposition 1 The population shares always sum up to 1.

Proof: We can write:
∑

ẋi =
∑

xiu (si, x)−
∑

xiu (x, x) = u (x, x)− u (x, x) = 0

This establishes that
∑

xi = const. The constant has to be 1 because
the population shares sum up to 1 initially.

3.1 Steady States and Nash Equilibria

Definition 2 The strategy σ is a steady state if for xi = σi (si) we have
dx
dt

= 0.

Proposition 2 If σ is the strategy played by each player in a symmatric
mixed NE then it is a steady state.

Proof: In a NE each player has to be indifferent between the strategies in
her support. Therefore, we have u (si, x) = u (x, x).

Note, that the reverse is NOT true. If all players cooperate in a Prisoner’s
Dilemma this will be a steady state (since there are no mutations).
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3.1.1 Example I

In 2 by 2 games the replicator dynamics is easily understood. Look at the
following game:

B

A

A B

0,0 1,1

1,1 0,0

There are only two types in the population and x = (xA, xB). It’s enough to
keep track of xA.

ẋA

xA

= xB − 2xAxB = (1− xA) (1− 2xA) (1)

It’s easy to see that ẋA > 0 for 0 < xA < 1
2

and ẋA < 0 for 1 > xA > 1
2
. This

makes xA = 1/2 a ’stable’ equilibrium (see below for a precise definition).

3.1.2 Example II

Now look at the New York game.
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0,0 1,1

1,1 0,0E

C

E C

We can show:

ẋE

xE

= xE − (xExE + xCxC) = (1− xE) (2xE − 1) (2)

Now the steady state xE = 1
2

is ’unstable’.

3.2 Stability

Definition 3 A steady state σ is stable if for all ε > 0 there exists δ > 0
such that if the process starts a distance δ away from the steady state it will
never get further away than ε.

The mixed equilibrium is stable in example I and unstable in example II.

Definition 4 A steady state σ is asymptotically stable if there exists some
δ > 0 such that the process converges to σ if it starts from a distance at most
δ away from the steady state.

The mixed equilibrium in example I is asymptotically stable.

Definition 5 A steady state σ is globally stable if the process converges to
the steady state from any initial state where xi > 0 for all si.

Stability can be interpreted as a form of equilibrium selection.

Theorem 1 If the steady state σ is stable then it is a NE.
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Proof: Assume not. Then there exists a profitable deviation si such that
u (si, σ) − u (σ, σ) = b > 0. Because the linear utility function is uni-
formly continuous there exists some ε such that for all x a distance less
than ε away we have |u (si, x)− u (si, σ)| < b

4
and |u (x, x)− u (σ, σ)| <

b
4
. This implies that |u (si, x

′)− u (x, x)| > b
2
. Because σ is stable

we know that for x close enough to σ (less than a distance δ the dy-
namics converges to σ. So take x (0) =

(
1− 1

2
δ
)
x + 1

2
δsi. Then we

have dxi

dt
= xi (u (si, x)− u (x, x)) ≥ xi

b
2
≥ δ

2
b

2
. But this implies that

x (t) →∞ which is a contradiction.

3.2.1 Example III

This part is harder and is NOT required for the exam.
The mixed equilibrium in the RPS game is stable but not asymptotically

stable. The RPS game is harder to analyze because each player has three
possible strategies. This implies that there are two differential equations to
keep track of.

S

P

R

R P S

0,0 −1,1 1,−1

1,−1 0,0 −1,1

−1,1 1,−1 0,0

We can concentrate on xR and xP . The average payoff is

u (x, x) = xR [−xP + xS] + xP [xR − xS] + xS [−xR + xP ] (3)

= 0 (4)
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We then get:

ẋR

xR

= −xP + xS (5)

ẋP

xP

= xR − xS (6)

The unique mixed equilibrium
(

1
3
, 1

3
, 1

3

)
is the only steady state of the system.

To see whether it is stable we have to linearize the system around the
steady state. We define x̃i = xi − 1

3
and obtain:

3 ˙̃xR = −x̃R − 2x̃P (7)

3 ˙̃xP = 2x̃R + x̃P (8)

We have to find the eigenvalues of the system which are λ = ±√3i. This
implies that the population shares ’circle’ around the steady state.

4 ESS-Evolutionary Stable States

The ESS concept concentrates on the role of mutations. Intuitively, the
stability notion in the replicator dynamics is already a selection criterion
because if the system is disturbed a little bit, it moves away from unstable
steady states. The ESS concept expands on this intuition.

Definition 6 The state x is ESS if for all y 6= x there exists ε such that
u (x, (1− ε) x + εy) > u (y, (1− ε) x + εy) for all 0 < ε < ε.

This definition captures the idea that a stable state is impervious to muta-
tions since they do worse than the original strategy.

Proposition 3 x is ESS iff for all y 6= x either (a) u (x, x) > u (y, x) or (b)
u (x, x) = u (y, x) and u (x, y) > u (y, y).

The following results establish the link between Nash equilibrium and
ESS.

Proposition 4 If x is ESS then it is a NE.

Proposition 5 If x is a strict NE then it is an ESS.
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Proposition 6 If x is a totally mixed ESS then it is the unique ESS.

The next theorem establishes the link between ESS and stability under
the replicator dynamics.

Theorem 2 If x is an ESS then it is asymptotically stable under the Repli-
cator Dynamics.

5 Stochastic Stability

Stochastic stability combines both mutations and a selection mechanism. It
provides a much more powerful selection mechanism for Nash equilibria than
ESS and the replicator dynamics.

The ESS concept gives us some guidance as to which Nash equilibria are
stable under perturbations or ’experimentation’ by agents. The replicator
dynamics tells us how a group of agents can converge to some steady state
starting from initial conditions. However, selection relies in many cases on the
initial conditions (take the coordination game, for example). In particular,
we cannot select between multiple strict equilibria.

For this section we concentrate on generic coordination games:

B

A

A B

a,a b,c

c,b d,d

We assume, that a > c and d > b such that both (A,A) and (B, B) are NE
of the game. We assume that a + b > c + d such that A is the risk-dominant
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strategy for each player. Note, that the risk-dominant NE is not necessarily
the Pareto optimal NE.

We have seen in experiments that agents tend to choose A. Can we justify
this with an evolutionary story?

YES!
Assume that there is a finite number n of agents who are randomly

matched against each other in each round. Assume that agents choose the
best response to whatever strategy did better in the population in the last
period. This is called the BR dynamics. Clearly, all agents will choose A if
xA > q∗ = d−b

a−b+d−c
. Because A is risk-dominant we have q∗ < 1

2
.

There are also mutations in each period. Specifically, with probability ε
each agent randomizes between both strategies.

We define the basin of attraction of xA = 1 (everybody plays A) to be
BA = [q∗, 1] and the basin of attraction of xA = 0 to be [0, q∗]. Whenever
the initial state of the system is within the basin of attraction it converges
to all A/ all B for sure if there are no mutations. We define the radius of the
basin BA to be the number of mutations it takes to ’jump out’ of the state
all A. We get RA = (1− q∗) n. Similarly, we define the co-radius CRA as the
number of mutations it takes at most to ’jump into’ the basin BA. We get
CRA = q∗n.

Theorem 3 If CRA < RA then the state ’all A’ is stochastically stable. The
waiting time to reach the state ’all A’ is of the order εCRA.

Therefore, the risk-dominant equilibrium is stochastically stable as q∗ < 1
2
.

5.1 The Power Local Interaction

Local interaction can significantly speed up the evolution of the system. As-
sume, that agents are located on the circle and play the BR to average play of
their direct neighbors in the previous period. It can be shown that CRA = 2
and CRA = n

2
. The convergence is a lot faster than under global interaction.
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Lecture X: Extensive Form Games

Markus M. Möbius

March 17, 2004

• Gibbons, chapter 2

• Osborne, sections 5.1, 5.2 and chapter 6

1 Introduction

While models presented so far are fairly general in some ways it should be
noted that they have one main limitation as far as accuracy of modeling goes
- in each game each player moves once and moves simultaneously.

This misses common features both of many classic games (bridge, chess)
and of many economic models.1 A few examples are:

• auctions (sealed bid versus oral)

• executive compensation (contract signed; then executive works)

• patent race (firms continually update resources based on where oppo-
nent are)

• price competition: firms repeatedly charge prices

• monetary authority and firms (continually observe and learn actions)

Topic today is how to represent and analyze such games.

1Gibbons is a good reference for economic applications of extensive form games.
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2 Extensive Form Games

The extensive form of a game is a complete description of

1. The set of players.

2. Who moves when and what their choices are.

3. The players’ payoffs as a function of the choices that are made.

4. What players know when they move.

2.1 Example I: Model of Entry

Currently firm 1 is an incumbent monopolist. A second firm 2 has the oppor-
tunity to enter. After firm 2 makes the decision to enter, firm 1 will have the
chance to choose a pricing strategy. It can choose either to fight the entrant
or to accommodate it with higher prices.

2

In Out

1

F A

2

0

−1

−1

1

1

2.2 Example II: Stackelberg Competition

Suppose firm 1 develops a new technology before firm 2 and as a result has
the opportunity to build a factory and commit to an output level q1 before
firm 2 starts. Firm 2 then observes firm 1 before picking its output level q2.
For concreteness suppose qi ∈ {0, 1, 2} and market demand is p (Q) = 3−Q.
The marginal cost of production is 0.
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1

q
1
=0 q

1
=1 q

1
=2

2

0 1 2

2

0 1 2

2

0 1 2

0

0

0

2

0

2

2

0

1

1

0

0

2

0

0

0

−2

−2

2.3 Example III: Matching Pennies

So far we assumed that players can observe all previous moves. In order
to model the standard matching pennies game in extensive form we have to
assume that the second player cannot observe the first player’s move.

Sequential matching pennies is represented as follows:

1

H T

2

H T

2

H T

1

−1

−1

1

−1

1

1

−1

If we want to indicate that player 2 cannot observe the move of player 1 we
depict the game as follows:
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1

H T

2

H T

2

H T

1

−1

−1

1

−1

1

1

−1

The extensive form representation allows that players can ’forget’ infor-
mation. For example we can assume that in a game with 4 rounds player 2
can observe player 1’s move in round 1, but in round 4 he has forgotten the
move of player 1. In most cases, we assume perfect recall which rules out
that players have such ’bad memory’.2

3 Definition of an Extensive Form Game

Formally a finite extensive form game consists of

1. A finite set of players.

2. A finite set T of nodes which form a tree along with functions giving
for each non-terminal node t 6∈ Z (Z is the set of terminal nodes)

• the player i (t) who moves

• the set of possible actions A (t)

• the successor node resulting from each possible action N (t, a)

2It becomes difficult to think of a solution concept of a game where players are for-
getful. Forgetfulness and rational behavior don’t go well together, and concepts like Nash
equilibrium assume that players are rational.

4



3. Payoff functions ui : Z → < giving the players payoffs as a function of
the terminal node reached (the terminal nodes are the outcomes of the
game).

4. An information partition: for each node t, h (t) is the set of nodes which
are possible given what player i (x) knows. This partition must satisfy

t′ ∈ h (x) ⇒ i (t′) = i (t) , A (t′) = A (t) , and h (t′) = h (t)

We sometimes write i (h) and A (h) since the action set is the same for
each node in the same information set.

It is useful to go over the definition in detail in the matching pennies game
where player 2 can’t observe player 1’s move. Let’s number the non-terminal
nodes t1, t2 and t3 (top to bottom).

1. There are two players.

2. S1 = S2 = {H, T} at each node.

3. The tree defines clearly the terminal nodes, and shows that t2 and t3
are successors to t1.

4. h (t1) = {t1} and h (t2) = h (t3) = {t2, t3}

4 Normal Form Analysis

In an extensive form game write Hi for the set of information sets at which
player i moves.

Hi = {S ⊂ T |S = h (t) for some t ∈ T with i (t) = i}

Write Ai for the set of actions available to player i at any of his information
sets.

Definition 1 A pure strategy for player i in an extensive form game is a
function si : Hi → Ai such that si (h) ∈ A (h) for all h ∈ Hi.

Note that a strategy is a complete contingent plan explaining what a
player will do in any situation that arises. At first, a strategy looks overspec-
ified: earlier action might make it impossible to reach certain sections of a
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tree. Why do we have to specify how players would play at nodes which can
never be reached if a player follows his strategy early on? The reason is that
play off the equilibrium path is crucial to determine if a set of strategies form
a Nash equilibrium. Off-equilibrium threats are crucial. This will become
clearer shortly.

Definition 2 A mixed behavior strategy for player i is a function σi : Hi →
∆ (Ai) such that supp (σi (h)) ⊂ A (h) for all h ∈ Ai.

Note that we specify an independent randomization at each information
set!3

4.1 Example I: Entry Game

We can find the pure strategy sets S1 = {Fight, Accomodate} and S2 =
{Out, In}. We can represent the game in normal form as:

A

F

Out In

2,0 −1,−1

2,0 1,1

3You might think that a more natural definition would simply define mixed strategies
as a randomization over a set of pure strategies (just as in simultaneous move games). It
can be shown that for games with perfect recall this definition is equivalent to the one
given here, i.e. a mixed strategy is a mixed behavior strategy and vice versa. In games
without perfect recall this is no longer true - it is instructive to convince yourself that in
such games each mixed behavior strategy is a mixed strategy but not vice versa.
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4.2 Example II: Stackelberg Competition

Firm 1 chooses q1 and firm 2 chooses a quantity q2 (q1). With three possible
output levels, firm 1 has three strategies, while firm 2 has 33 = 9 different
strategies because it can choose three strategies at its three information sets.

4.3 Example III: Sequential Matching Pennies

We have S1 = {H, T}. Firm 2 has four strategies as it can choose two actions
at two information sets. Strategy HH implies that firm 2 chooses H at both
nodes, while HT implies that it chooses H in the left node (after having
observed H) and T in the right node (after having observed T).

T

H

HH HT TH TT

1,−1 1,−1 −1,1 −1,1

−1,1 1,−1 −1,1 1,−1

4.4 Example IV

Look at the following extensive form game:
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1

L R

2

L R

1

a b

1

0

0

1

4

0

3

3

One might be tempted to say that player 1 has three strategies because there
are only three terminal nodes which can be reached. However, there are 4
because La and Lb are two distinct strategies. After player 1 plays L it
is irrelevant for the final outcome what he would play in the bottom node.
However, this off equilibrium pay is important for player 2’s decision process
which in turn makes 1 decide whether to play L or R.

Rb

Ra

Lb

La

L R

1,0 1,0

1,0 1,0

0,1 4,0

0,1 3,3
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5 Nash Equilibrium in Extensive Form Games

We can apply NE in extensive form games simply by looking at the normal
form representation. It turns out that this is not an appealing solution
concept because it allows for too many profiles to be equilibria.

Look at the entry game. There are two pure strategy equilibria: (A,In)
and (F,Out) as well as mixed equilibria (αF + (1− α) A, Out) for α ≥ 1

2
.

Why is (F,Out) a Nash equilibrium? Firm 2 stays out because he thinks
that player 2 will fight entry. In other words, the threat to fight entry is
sufficient to keep firm 2 out. Note, that in equilibrium this threat is never
played since firm 2 stays out in the first place.

The problem with this equilibrium is that firm 2 could call firm 1’s bluff
and enter. Once firm 2 has entered it is in the interest of firm 1 to accom-
modate. Therefore, firm 1’s threat is not credible. This suggests that only
(A,In) is a reasonable equilibrium for the game since it does not rely on non-
credible threats. The concept of subgame perfection which we will introduce
in the next lecture rules out non-credible threats.

5.1 Example II: Stackelberg

We next look at a Stackelberg game where each firm can choose qi ∈ [0, 1]
and p = 1− q1 − q2 and c = 0.

Claim: For any q′1 ∈ [0, 1] the game has a NE in which firm 1
produces q′1.

Consider the following strategies:

s1 = q′1

s2 =

{
1−q′1

2
if q1 = q′1

1− q′1 if q1 6= q′1

In words: firm 2 floods the market such that the price drops to zero if firm
1 does not choose q′1. It is easy to see that these strategies form a NE. Firm
1 can only do worse by deviating since profits are zero if firm 2 floods the
market. Firm 2 plays a BR to q′1 and therefore won’t deviate either.

Note, that in this game things are even worse. Unlike the Cournot game
where we got a unique equilibrium we now have a continuum of equilibria.
Second, we have even more disturbing non-credible threats. For instance, in
the equilibrium where q′1 = 1 firm 2’s threat is ”if you don’t flood the market
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and destroy the market I will”. Not only won’t the threat be carried out -
it’s also hard to see why it would be made in the first place.
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Lecture XI: Subgame Perfect Equilibrium

Markus M. Möbius

April 3, 2004

• Gibbons, chapter 2.1.A,2.1.B,2.2.A

• Osborne, sections 5.4, 5.5

1 Introduction

Last time we discussed extensive form representation and showed that there
are typically lots of Nash equilibria. Many of them look unreasonable because
they are based on out of equilibrium threats. For example, in the entry
game the incumbent can deter entry by threatening to flood the market. In
equilibrium this threat is never carried out. However, it seems unreasonable
because the incumbent would do better accommodating the entrant if entry
in fact occurs. In other words, the entrant can call the incumbent’s bluff by
entering anyway.

Subgame perfection is a refinement of Nash equilibrium. It rules out
non-credible threats.

2 Subgames

Definition 1 A subgame G′ of an extensive form game G consists of

1. A subset T ′ of the nodes of G consisting of a single node x and all of
its successors which has the property that t ∈ T ′, t′ ∈ h (t) then t′ ∈ T ′.

2. Information sets, feasible moves and payoffs at terminal nodes as in G.
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2.1 Example I: Entry Game

2

In Out

1

F A

2

0

−1

−1

1

1

This game has two subgames. The entire game (which is always a sub-
game) and the subgame which is played after player 2 has entered the market:

1

F A

−1

−1

1

1

2.2 Example II

1

L R

2

L R

2

L R

1

a b

2

a b

2

a b
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This game has also two subgames. The entire game and the subgame (a
simultaneous move game) played after round 2:

1

a b

2

a b

2

a b

This subgame has no further subgames: otherwise the information set of
player 2 would be separated which is not allowed under our definition.

3 Subgame Perfect Equilibrium

Definition 2 A strategy profile s∗ is a subgame perfect equilibrium of G if
it is a Nash equilibrium of every subgame of G.

Note, that a SPE is also a NE because the game itself is a (degenerate)
subgame of the entire game.

Look at the entry game again. We can show that s1 = A and s2 = Entry
is the unique SPE. Accomodation is the unique best response in the subgame
after entry has occurred. Knowing that, firm 2’s best response is to enter.

3.1 Example: Stackelberg

We next continue the Stackelberg example from the last lecture. We claim
that the unique SPE is q∗2 = 1

2
and q∗1 (q2) = 1−q2

2
.

The proof is as follows. A SPE must be a NE in the subgame after firm
1 has chosen q1. This is a one player game so NE is equivalent to firm 1
maximizing its payoff, i.e. q∗1 (q1) ∈ arg max q1 [1− (q1 + q2)]. This implies
that q∗1 (q2) = 1−q2

2
. Equivalently, firm 1 plays on its BR curve.

A SPE must also be a NE in the whole game, so q∗2 is a BR to q∗1:

u2 (q1, q
∗
2) = q2 (1− (q2 + q∗1 (q2))) = q1

1− q1

2
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The FOC for maximizing u2 is q∗2 = 1
2
.

Note that firm 2 (the first mover) produces more than in Cournot.
There are many games which fit the Stackelberg paradigm such as mon-

etary policy setting by the central bank, performance pay for managers etc.
We will discuss general results for this class of games in the next lecture.

4 Backward Induction

The previous example illustrates the most common technique for finding and
verifying that you have found the SPE of a game. Start at the end of the
game and work your way from the start.

We will focus for the moment on extensive form games where each infor-
mation set is a single node (i.e. players can perfectly observe all previous
moves).

Definition 3 An extensive form is said to have perfect information if each
information set contains a single node.

Proposition 1 Any finite game of perfect information has a pure strategy
SPE. For generic payoffs in a finite extensive form game with perfect infor-
mation the SPE is unique.

What does generic mean? With generic payoffs players are never indiffer-
ent between two strategies. If payoffs are randomly selected at the terminal
nodes then indifference between two actions is a zero probability event. More
mathematically, we can say that the results holds for almost all games.

Proof: I did it in class, and I do a more general proof in the next section
for games with imperfect information. Intuitively, you solve the last
rounds of the game, then replace these subgames with the (unique)
outcome of the NE and repeat the procedure.

What happens if players are indifferent between two strategies at some
point? Then there is more than one SPE, and you have to complete the
backward induction for each possible outcome of the subgame.

Consider the following game:
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1

L R

2

A B

2

C D

3

2

0

0

1

1

1

1

After player 1 played R player 2 is indifferent between C and D. It is
easy to see that there are infinitely many SPE such that s∗1 = L and s∗2 =
(A, αC + (1− α) D) for 0 ≤ α ≤ 1.

Note however, that each of these SPE yields the same equilibrium out-
come in which the left terminal node is reached. Hence equilibrium play is
identical but off equilibrium pay differs. There are several SPE in this perfect
information game because it is not generic.

5 Existence of SPE

The next theorem shows that the logic of backward induction can be extended
to games with imperfect information.

Theorem 1 Every finite extensive form game has a SPE.

This theorem is the equivalent of the Nash existence theorem for extensive
form games. It establishes that SPE is not too strong in the sense that a
SPE exists for each extensive form game. We have seen that NE is too weak
in extensive form games because there are too many equilibria.

The proof of the theorem is a generalization of backward induction. In
backward induction we solve the game from the back by solving node after
node. Now we solve it backwards subgame for subgame.

Formally, define the set Γ of subgames of the game G. Γ is never empty
because G itself is a member. We can define a partial order on the set Γ such
that for two subgames G1 and G2 we have G1 ≥ G2 if G2 is a subgame of
G1.

Look at the following example.
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1

A B C

1

H T

1

H T

2

H T

2

H T

2

H T

2

H T

1

−1

1

−1

−1

1

−1

1

1

−1

1

−1

−1

1

−1

1

1

−1

This game has three subgames: the whole game G1 and two matching pennies
subgames G2 and G3. We have G1 ≥ G2 and G1 ≥ G3 but G2 and G3 are
not comparable.

Step I Identify the terminal subgames. Terminal subgames are those
which do not dominate another subgame (G′ is terminal if there is no G′′

such that G′ > G′′.
Step II Solve the terminal subgames These subgames have no further

subgames. They have a Nash equilibrium by the Nash existence result (they
are finite!).

In our example the matching pennies subgames have the unique NE 1
2
H+

1
2
T for each player.

Step III Calculate the Nash payoffs of the terminal subgames and replace
these subgames with the Nash payoffs.

In our example the matching pennies payoffs are 0 for each player. We
get:

1

A B C

1

−1

0

0

0

0
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Step IV Goto step I. Repeat this procedure until all subgames have been
exhausted. In this way we construct ’from the back’ a SPE. In many cases
the procedure does not produce a unique SPE if a subgame has multiple NE.

In our example we are lucky because matching pennies just has one NE. In
the reduced game player 1 plays A which is his unique BR. The unique SPE
is therefore s∗1 =

(
A, 1

2
H + 1

2
T, 1

2
H + 1

2
T

)
and s∗2 =

(
1
2
H + 1

2
T, 1

2
H + 1

2
T

)
.

6 Application of SPE to Behavioral Economics

In the first two lectures of the course we analyzed decision problems and later
contrasted them to proper games where agents have to think strategically.
Our decision problems were essentially static - people one action out of a
number of alternatives.

In reality many decision problems involve taking decision over time: re-
tirement decision, savings, when to finish a paper for class etc. are standard
examples. Intertemporal decision making is different from static decision
making because agents might want to revise past decisions in the future
(they never have a chance to do so under static decision making). If agents
revise decisions we say that they are time-inconsistent. In most economics
classes you will never hear about such behavior - the decision making pro-
cess of agents is assumed to be time-consistent. This reduces intertemporal
decision making essentially to static decision making.

6.1 Time-Consistent Preferences

How do we model intertemporal decision making? Economists assume that
the future counts less than the present - agents discount. Typically we assume
that the utility in different time periods can be added up. So getting x1 now
and x2 in the next period has total utility:

U = u (x1) + δu (x2) (1)

For concreteness assume that agents want to spend 100 Dollars over two
time periods. Their discount factor for next period’s utility is 0.5. Their
utility function is the square root function u (x) =

√
x. You can check that

the agent would allocate 80 Dollar to today’s consumption and the rest to
tomorrow’s consumption.
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The agent is necessarily time-consistent in a two-period model because
she cannot reallocate any resources in period 2. However this is no longer
true in a 3-period model.

Let’s first look at exponential discounting where consumption in period t
is discounted by δt:

U1 = u (x1) + δu (x2) + δ2u (x3) (2)

Let’s assume the same parameters as above. It’s easy to check that the agent
would want to allocate 2100

16
≈ 76 Dollars to the first period, 19 Dollars to

the second and 5 to the third.
Now the agent could potentially change her allocation in period 2. Would

she do so? The answer is no. Her decision problem in period 2 can be written
as maximizing U2 given that x2 + x3 = 100− 76:

U2 = u (x2) + δu (x3) (3)

Note, that:
U1 = u (x1) + δU2 (4)

Therefore, if an agent would just a different consumption plan in period 2
she would have done so in period 1 as well.

We say that there is no conflict between different selves in games
with exponential discounting. Agents are time-consistent. Time-
consistent preferences are assumed in most of micro and macro economics.

6.2 Time-Inconsistent Preferences

Let’s now look at a difference discounting rule for future consumption which
we refer to as hyperbolic discounting. Agents discount at rate δ between all
future time periods. However, they use an additional discount factor β < 1 to
discount future versus present consumption. The idea here is, that consumers
discount more strongly between period 1 and 2 than between period 2 and
3:

U = u (x1) + βδu (x2) + βδ2u (x3) (5)

For simplicity we assume δ = 1 from now on.
Let’s assume β = 1

2
. In this case a period 1 agent would allocate 50 Dollars

to today and 25 Dollars to both tomorrow and the day after tomorrow.
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What would the period 2 agent do with her remaining 50 Dollars? Her
decision problem would look as follows:

U = u (x2) + βu (x3) (6)

So she would allocate 40 Dollars to period 2 and only 10 Dollars to the third
period.

Therefore there is conflict between agent 1’s and agent 2’s preferences!
Agent 1 would like agent 2 to save more, but agent 2 can’t help herself and
splurges!

6.3 Naive and Sophisticated Agents

There are two ways to deal with the self-control problem of agents. First,
agents might not be aware of their future self’s self-control problem - we say
that they are naive. In this case you solve a different decision problem in
each period and the consumption plans of agents get continuously revised.

If agents are aware of their self-control problem we call them sophisti-
cated. Sophisticated agents play a game with their future self, are aware that
they do so, and use SPE to solve for a consumption plan.

Let’s return to our previous problem. A period 2 agent would always
spend four times as much on this period than on period 3 (sophisticated or
naive). Period 1 agent realizes this behavior of agent 2 and therefore takes
the constraint x2 = 4x3 into account when allocating her own consumption.
She maximizes:

U1 =
√

x1 +
1

2

[√
4

5
(1− x1) +

√
1

5
(1− x1)

]
(7)

She would now spend 68 Dollars in the first period and predict that her
future self spends 24 Dollars in the second period such that there are 6 left
in the last period.

What has happened? Effectively, self 1 has taken away resources from
self 2 by spending more in period 1. Self 1 predicts that self 2 would splurge
- so self 1 might as well splurge immediately.

6.4 The Value of Commitment

If agents are time-inconsistent they can benefit from commitment devices
which effectively constrain future selves. For example, a sophisticated hy-
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perbolic agent could invest 50 Dollars in a 401k from which he can’t with-
draw more than 25 Dollars in the second period. While a time-consistent
agent would never enter such a bargain (unexpected things might happen
- so why should he constrain his future choices), a time-inconsistent agent
might benefit.

7 Doing it Now or Later (Matt Rabin, AER,

1999)

This is a nice little paper which analyzes procrastination.

7.1 Salient Costs

Example 1 Assume you go to the cinema on Saturdays. The schedule con-
sists of a mediocre movie this week, a good movie next week, a great movie
in two weeks and (best of all) a Johnny Depp movie in three weeks. Also
assume that you must complete a report during the next four weeks so that
you have to skip one of the movies. The benefit of writing the report is the
same in each period (call it (v, v, v, v). The cost of not seeing a movie is
(c1, c2, c3, c4) = (3, 5, 8, 13). When do you write the report?

Let’s assume that there are three types of agents. Time consistent agents
(TC) have δ = 1 and β = 1. Naive agents have β = 1

2
and sophisticated

agents are aware of their self-control problem.
TC agents will write the report immediately and skip the mediocre movie.

Generally, TC agents will maximize v − c.
Naive agents will write the report in the last period. They believe that

they will write the report in the second period. In the second period, they
assume to write it in the third period (cost 4 versus 5 now). In the third
period they again procrastinate.

Sophisticated agents use backward induction. They know that period 3
agent would procrastinate. Period 2 agent would predict period 3’s procras-
tination and write the report. Period 1 agent knows that period 2 agent will
write the report and can therefore safely procrastinate.

This example captures the idea that sophistication can somehow help
to overcome procrastination because agents are aware of their future selfs
tendencies to procrastinate.
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7.2 Salient Rewards

Example 2 Assume you can go to the cinema on Saturdays. The schedule
consists of a mediocre movie this week, a good movie next week, a great movie
in two weeks and (best of all) a Johnny Depp movie in three weeks. You have
no money but a coupon to spend on exactly one movie. The benefit of seeing
the movies are (v1, v2, v3, v4) = (3, 5, 8, 13). Which movie do you see?

The TC agent would wait and see the Depp movie which gives the highest
benefit.

The naive agent would see the third movie. He would not the mediocre
one because he would expect to see either the Depp movie later. He would
also not see the week 2 movie for the same reason. But in week 3 he caves
in to his impatience and spends the coupon.

The sophisticated agent would see the mediocre movie! She would expect
that period 3 self caves in to her desires. Period 2 self would then go to the
movies expecting period 3 self to cave in. But then period 1 self should go
immediately because 3 > 2.5.

The result is the opposite of the result we got for the procrastination
example. Sophistication hurts agents! The intuition is that naive agents
can pretend that they see the Depp movie and therefore are willing to wait.
Sophisticated agents know about their weakness and therefore don’t have the
same time horizon. This makes them cave in even earlier.

A sophisticated agent would not be able to withstand a jar of cookies
because she knows that she would cave in too early anyway, so she might as
well cave in right away.

7.3 Choice and Procrastination: The Perfect as the
Enemy of the Good

In a related paper (Choice and Procrastination, QJE 2002, forthcoming)
Rabin points out that greater choice can lead to more procrastination. In
the previous example, there was just procrastination on a single action. Now
assume, that agents have the choice between two actions.

Example 3 Assume you are a naive hyperbolic discounter (β = 1
2
). You

can invest 1,000 Dollar in your 401k plan which gives you a yearly return of
5 percent. Once the money is invested it is out of reach for the next 30 years.
Just when you want to sign the forms your friend tells you that he has invested
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his 1,000 Dollars at a rate of 6 percent. You make ca quick calculation and
decide that you should do more research before signing on because research
only causes you a disutility of 30 Dollars and the compounded interest gain
over 30 years far exceed this amount. What will you do?

You won’t do anything and still have your 1000 Dollars after 30 years. Wait-
ing a year has a cost of 50 Dollars (lost interest) which is discounted by β = 1

2

and thus is below the salient cost of doing research. So you wait. and wait.
and wait.

This is a nice example of why the perfect can be the enemy of the good:
more choice can lead to procrastination. For a naive decision maker choices
are determined by long-term benefits (just as for TC decision maker). How-
ever, procrastination is caused by small period to period costs of waiting
which exceed salient costs of doing research.
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Lecture XII: Analysis of Infinite Games

Markus M. Möbius

April 7, 2004

• Gibbons, chapter 2.1.A,2.1.B,2.2.A

• Osborne, sections 14.1-14.4, 16

• Oxborne and Rubinstein, sections 6.5, 8.1 and 8.2

1 Introduction - Critique of SPE

The SPE concept eliminates non-credible threats but it’s worth to step back
for am minute and ask whether we think SPE is reasonable or in throwing
out threats we have been overzealous.

Practically, for this course the answer will be that SPE restrictions are
OK and we’ll always use them in extensive form games. However, it’s worth
looking at situations where it has been criticized. Some of the worst anoma-
lies disappear in infinite horizon games which we study next.

1.1 Rationality off the Equilibrium Path

Is it reasonable to play NE off the equilibrium path? After all, if a player
does not follow the equilibrium he is probably as stupid as a broomstick.
Why should we trust him to play NE in the subgame? Let’s look at the
following game to illustrate that concern:
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1

L R

1

A B

2

x y

2

x y

10

0

1

1

5

0

0

−100

4

0

Here (L,A, x) is the unique SPE. However, player 2 has to put a lot of
trust into player 1’s rationality in order to play x. He must believe that
player 1 is smart enough to figure out that A is a dominant strategy in the
subgame following R. However, player 2 might have serious doubts about
player 1’s marbles after the guy has just foregone 5 utils by not playing L.1

1.2 Multi-Stage Games

Lemma 1 The unique SPE of the finitely repeated Prisoner’s Dilemma game
in which players get the sum of their payoffs from each stage game has every
player defecting at each information set.

The proof proceeds by analyzing the last stage game where we would see
defection for sure. But then we would see defection in the second to last
stage game etc. In the same way we can show that the finitely repeated
Bertrand game results in pricing at marginal cost all the time.

Remark 1 The main reason for the breakdown of cooperation in the finitely
repeated Prisoner’s Dilemma is not so much SPE by itself by the fact that
there is a final period in which agents would certainly defect. This raises the
question whether an infinitely repeated PD game would allow us to cooperate.
Essentially, we could cooperate as long as the other player does, and if there

1After all any strategy in which L is played strictly dominates any strategy in which R
is played in the normal form.
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is defection, we defect from then on. This still looks like a SPE - in any
subgame in which I have defected before, I might as well defect forever. If I
haven’t defected yet, I can jeopardize cooperation by defection, and therefore
should not do it as long as I care about the future sufficiently.

These results should make us suspicious. Axelrod’s experiments (see fu-
ture lecture) showed that in the finitely repeated Prisoner’s Dilemma people
tend to cooperate until the last few periods when the ’endgame effect’ kicks
in. Similarly, there are indications that rival firms can learn to collude if they
interact repeatedly and set prices above marginal cost.

This criticisms of SPE is reminiscent of our criticism of IDSDS. In both
cases we use an iterative procedure to find equilibrium. We might have doubts
where real-world subjects are able (and inclined) to do this calculation.

A famous example for the perils of backward induction is Rosenthal’s
centipede game:

1

L R

2

L R

1

L R

2

L R

1

L R

2

L R

1
0

0
2

3
1

2
4

5
3

4
6

7
5

The game can be extended to even more periods. The unique SPE of the
game is to drop out immediately (play L) at each stage. However, in experi-
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ments people typically continue until almost the last period before they drop
out.

2 Infinite Horizon Games

Of the criticism of SPE the one we will take most seriously is that long finite
horizon models do not give reasonable answers. Recall that the problem
was that the backward induction procedure tended to unravel ’reasonably’
looking strategies from the end. It turns out that many of the anomalies
go away once we model these games as infinite games because there is not
endgame to be played.

The prototypical model is what Fudenberg and Tirole call an infinite
horizon multistage game with observed actions.

• At times t = 0, 1, 2, .. some subset of the set of players simultaneously
chooses actions.

• All players observe the period t actions before choosing period t + 1
actions.

• Players payoffs maybe any function of the infinite sequence of actions
(play does not end in terminal nodes necessarily any longer)

2.1 Infinite Games with Discounting

Often we assume that player i’s payoffs are of the form:

ui (si, s−i) = ui0 (si, s−i) + δui1 (si, s−i) + δ2ui2 (si, s−i) + .. (1)

where uit (si, s−i) is a payoff received at t when the strategies are followed.

2.1.1 Interpretation of δ

1. Interest rate δ = 1
1+r

. Having two dollars today or two dollars tomor-
row makes a difference to you: your two dollars today are worth more,
because you can take them to the bank and get 2 (1 + r) Dollars to-
morrow where r is the interest rate. By discounting future payoffs with
δ = 1

1+r
we correct for the fact that future payoffs are worth less to us

than present payoffs.
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2. Probabilistic end of game: suppose the game is really finite, but that
the end of the game is not deterministic. Instead given that stage t is
reached there is probability δ that the game continues and probability
1 − δ that the game ends after this stage. Note, that the expected
number of periods is then 1

1−δ
and finite. However, we can’t apply

backward induction directly because we can never be sure that any
round is the last one. The probabilistic interpretation is particularly
attractive for interpreting bargaining games with many rounds.

2.2 Example I: Repeated Games

Let G be a simultaneous move game with finite action spaces A1,..,AI . The
infinitely repeated game G∞ is the game where in periods t = 0, 1, 2, .. the
players simultaneously choose actions (at

1, .., a
t
I) after observing all previous

actions. We define payoffs in this game by

ui (si, s−i) =
∞∑

t=0

δtũi

(
at

1, .., a
t
I

)
(2)

where (at
1, .., a

t
I) is the action profile taken in period t when players follow

strategies s1, .., sI , and ũi are the utilities of players in each stage game.
For example, in the infinitely repeated Prisoner’s Dilemma game the ũi are
simply the payoffs in the ’boxes’ of the normal form representation.

2.3 Example II: Bargaining

Suppose there is a one Dollar to be divided up between two players. The
following alternate offer procedure is used:

I. In periods 0,2,4,... player 1 offers the division (x1, 1− x1). Player 2
then accepts and the game ends, or he rejects and play continues.

II. In period 1,3,5,... player 2 offers the division (1− x2, x2). Player 1 then
accepts or rejects.

Assume that if the division (y, 1− y) is agreed to in period t then the payoffs
are δty and δt (1− y).2

2Note that this is not a repeated game. First of all, the stage games are not identical
(alternate players make offers). Second, there is no per period payoff. Instead, players
only get payoffs when one of them has agreed to an offer. Waiting to divide the pie is
costly.
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Remark 2 There are finite versions of this game in which play end after
period T . One has to make some assumption what happens if there is no
agreement at time T - typically, one assumes that the pie simply disappears.
If T = 1 then we get the simple ultimatum game.

3 Continuity at Infinity

None of the tools we’ve discussed so far are easy to apply for infinite games.
First, backward induction isn’t feasible because there is no end to work back-
ward from. Second, using the definition of SPE alone isn’t very easy. There
are infinitely many subgames and uncountably many strategies that might
do better.

We will discuss a theorem which makes the analysis quite tractable in
most infinite horizon games. To do so, we must first discuss what continuity
at infinity means.

Definition 1 An infinite extensive form game G is continuous at ∞ if

lim
T→∞

sup
i,σ,σ′ s. th. σ (h) =
σ′ (h) for all h in peri-
ods t ≤ T

|ui (σ)− ui (σ
′)| = 0

In words: compare the payoffs of two strategies which are identical for all
information sets up to time T and might differ thereafter. As T becomes large
the maximal difference between any two such strategies becomes arbitrarily
small. Essentially, this means that distant future events have a very small
payoff effect.

3.1 Example I: Repeated Games

If σ and σ′ agree in the first T periods then:

|ui (σ)− ui (σ
′)| =

∣∣∣∣∣
∞∑

t=T

δt
(
ũi

(
at

)− ũi (a
′
t)

)
∣∣∣∣∣

≤
∞∑

t=T

δt max
i,a,a′

|ũi (a)− ũi (a
′)|
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For finite stage games we know that M = maxi,a,a′ |ũi (a)− ũi (a
′)| is finite.

This implies that

lim
T→∞

|ui (σ)− ui (σ
′)| ≤ lim

T→∞

∞∑
t=T

δtM = lim
T→∞

δT

1− δ
M = 0.

3.2 Example II: Bargaining

It’s easy to check that the bargaining game is also continuous.

3.3 Example III: Non-discounted war of attrition

This is an example for an infinite game which is NOT continuous at infinity.
Players 1 and 2 choose at

i ∈ {Out, Fight} at time t = 0, 1, 2, ... The game
ends whenever one player quits with the other being the ’winner’. Assume
the payoffs are

ui (si, s−i) =

{
1− ct if player i ’wins’ in period t
−ct if player i quits in period t

Note, that players in this game can win a price of 1 by staying in the game
longer than the other player. However, staying in the game is costly for both
players. Each player wants the game to finish as quickly as possible, but also
wants the other player to drop out first.

This game is not continuous at ∞. Let

σT = Both fight for T periods and then 1 quits

σ′T = Both fight for T periods and then 2 quits.

Then we have ∣∣ui

(
σT

)− ui

(
σ′T

)∣∣ = 1.

This expression does not go to zero as T →∞.

4 The Single-Period Deviation Principle

The next theorem makes the analysis of infinite games which are continuous
at ∞ possible.
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Theorem 1 Let G be an infinite horizon multistage game with observed ac-
tions which is continuous at ∞. A strategy profile (σ1, .., σI) is a SPE if and
only if there is no player i and strategy σ̂i that agrees with σi except at a sin-
gle information set ht

i and which gives a higher payoff to player i conditional
on ht

i being reached.

We write ui (σi, σ−i|x) for the payoff conditional on x being reached. For
example, in the entry game below we have u2 (Accomodate, Out|node 1 is reached) =
1.

2

In Out

1

F A

2

0

−1

−1

1

1

Recall, that we can condition on nodes which are not on the equilibrium path
because the strategy of each player defines play at each node.

4.1 Proof of SPDP for Finite Games

I start by proving the result for finite-horizon games with observed actions.
Step I: By the definition of SPE there cannot be a profitable deviation

for any player at some information set in games with observed actions.3

Step II: The reverse is a bit harder to show. We want to show that
ui (σ̂i, σ−i|xt) ≤ ui (σi, σ−i|xt) for all initial nodes xt of a subgame (subgame
at some round t).

We prove this by induction on T which is the number of periods in which
σi and σ̂i differ.

3We have to very careful at this point. We have defined SPE as NE in every subgame.
Subgames can only originate at nodes and not information sets. However, in games with
observed actions all players play simultaneous move games in each round t. Therefore any
deviation by a player at an information set at round t which is not a singleton is on the
equilibrium path of some subgame at round t.
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T=1: In this case the result is clear. Suppose σi and σ̂i differ only in
the information set in period t′. If t > t′ it is clear that ui (σ̂i, σ−i|xt) =
ui (σi, σ−i|xt) because the two strategies are identical at all the relevant in-
formation sets. If t ≤ t′ then:

ui (σ̂i, σ−i|xt) =
∑

hit′

ui (σ̂i, σ−i|hit′) Prob {hit′|σ̂i, σ−i, xt}

≤
∑

hit′

ui (σi, σ−i|hit′)︸ ︷︷ ︸
follows from one
stage deviation
criterion

Prob {hit′|σi, σ−i, xt}︸ ︷︷ ︸
follows from σi

and σ̂i having
same play be-
tween t and t′

= ui (σi, σ−i|xt)

T → T+1:Assuming that the result holds for T let σ̂i be any strategy
differing from σi in T + 1 periods. Let t′ be the last period at which they
differ and define σ̃i by:

σ̃i (hit) =

{
σ̂i (hit) if t < t′

σi (hit) if t ≥ t′

In other words, σ̃i differs from σi only at T periods. Therefore we have for
any xt

ui (σ̃i, σ−i|xt) ≤ ui (σi, σ−i|xt)

by the inductive hypothesis since we assumed that the claim holds for T .
However, we also know that σ̃ and σ̂ only differ in a single deviation at

round t′. Therefore, we can use exactly the same argument as in the previous
step to show that

ui (σ̂i, σ−i|xt) ≤ ui (σ̃i, σ−i|xt)

for any xt.
4

Combining both inequalities we get the desires result:

ui (σ̂i, σ−i|xt) ≤ ui (σi, σ−i|xt)

This proves the result for finite games with observed actions.

4It is important that we have defined σ̃i in differing only in the last period deviation.
Therefore, after time t′ strategy σ̃i follows σi. This allows us to use the SPDP.
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4.2 Proof for infinite horizon games

Note, that the proof for finite-horizon games also establishes that we for a
profile σ which satisfies SPDP player i cannot improve on σi in some subgame
xt by considering a new strategy σ̂i with finitely many deviations from σi.
However, it is still possible that deviations at infinitely many periods might
be an improvement for player i.

Assume this would be the case for some σ̂i. Let’s denote the gain from
using this strategy with ε:

ε = ui (σ̂i, σ−i|xt)− ui (σi, σ−i|xt)

Because the game is continuous at ∞ this implies that if we choose T large
enough we can define some strategy σ̃i which agrees with σ̂i up to period T
and then follows strategy σi such that:

|ui (σ̂i, σ−i|xt)− ui (σ̃i, σ−ixt)| < ε

2

This implies that the new strategy σ̃i gives player i strictly more utility than
σi. However, it can only differ from σi for at most T periods. But this is a
contradiction as we have shown above. QED

Remark 3 Games which are at continuous at ∞ are in some sense ’the next
best thing’ to finite games.

5 Analysis of Rubinstein’s Bargaining Game

To illustrate the use of the single period deviation principle and to show
the power of SPE in one interesting model we now return to the Rubinstein
bargaining game introduced before.

First, note that the game has many Nash equilibria. For example, player
2 can implement any division by adopting a strategy in which he only accepts
and proposes a share x2 and rejects anything else.

Proposition 1 The bargaining game has a unique SPE. In each period of
the SPE the player i who proposes picks xi = 1

1+δ
and the other player accepts

any division giving him at least δ
1+δ

and rejects any offer giving him less.

Several observations are in order:
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1. We get a roughly even split for δ close to 1 (little discounting). The
proposer can increase his share the more impatient the other player is.

2. Agreement is immediate and bargaining is therefore efficient. Players
can perfectly predict play in the next period and will therefore choose a
division which makes the other player just indifferent between accepting
and making her own proposal. There is no reason to delay agreement
because it just shrinks the pie. Immediate agreement is in fact not
observed in most experiments - last year in a two stage bargaining game
in class we observed that only 2 out of 14 bargains ended in agreement
after the first period. There are extensions of the Rubinstein model
which do not give immediate agreement.5

3. The division becomes less equal for finite bargaining games. Essentially,
the last proposer at period T can take everything for himself. Therefore,
he will tend to get the greatest share of the pie in period 1 as well
- otherwise he would continue to reject and take everything in the
last period. In our two-period experiments we have in deed observed
greater payoffs to the last proposer (ratio of 2 to 1). However, half
of all bargains resulted in disagreement after the second period and so
zero payoffs for everyone. Apparently, people care about fairness as
well as payoffs which makes one wonder whether monetary payoffs are
the right way to describe the utility of players in this game.

5.1 Useful Shortcuts

The hard part is to show that the Rubinstein game has a unique SPE. If we
know that it is much easier to calculate the actual strategies.

5.1.1 Backward Induction in infinite game

You can solve the game by assuming that random payoff after rejection of
offer at period T . The game then becomes a finite game of perfect information
which can be solved through backward induction. It turns out that as T →∞

5For example, when there is uncertainty about a players discount factor the proposer
might start with a low offer in order to weed out player 2 types with low discount factor.
Players with high δ will reject low offers and therefore agreement is not immediate. To
analyze these extension we have to first develop the notion of incomplete information
games.
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the backward solution converges to the Rubinstein solution. This technique
also provides an alternative proof for uniqueness.

5.1.2 Using the Recursive Structure of Game

The game has a recursive structure. Each player faces essentially the same
game, just with interchanged roles. Therefore, in the unique SPE player
1 should proposes some (x, 1− x) and player 2 should propose (1− x, x).
Player 1’s proposal to 2 should make 2 indifferent between accepting imme-
diately or waiting to make her own offer (otherwise player 1 would bid higher
or lower). This implies:

1− x︸ ︷︷ ︸
2’s payoff at period 1

= δx︸︷︷︸
2’s discounted payoff from period 2

x =
1

1 + δ

5.2 Proof of Rubinstein’s Solution

5.2.1 Existence

We show that there is no profitable single history deviation.

Proposer: If he conforms at period t the continuation payoff is δt 1
1+δ

. If he deviates

and asks for more he gets δt+1 δ
1+δ

. If he deviates and asks for less he
gets less. Either way he loses.

Recipient: Look at payoffs conditional on y being proposes in period t.

– If he rejects he gets δt+1 1
1+δ

.

– If he accepts he gets δty.

– If y ≥ δ
1+δ

the strategy says accept and this is better than reject-
ing.

– If y < δ
1+δ

the strategy says reject and accepting is not a profitable
deviation.
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5.2.2 Uniqueness

This proof illustrates a number of techniques which enable us to prove prop-
erties about equilibrium without actually constructing it.

Let v and v be the highest and lowest payoffs received by a proposer in
any SPE. We first observe:

1− v ≥ δv (3)

If this equation would not be true then no proposer could propose v because
the recipient could always get more in any subgame. We also find:

v ≥ 1− δv (4)

If not then no proposer would propose v - she would rather wait for the other
player to make her proposal because she would get a higher payoff this way.

We can use both inequalities to derive bounds on v and v:

v ≥ 1− δv ≥ 1− δ (1− δv) (5)(
1− δ2

)
v ≥ 1− δ (6)

v ≥ 1

1 + δ
(7)

Similarly, we find:

1− v ≥ δv ≥ δ (1− δv) (8)

v ≤ 1

1 + δ
(9)

Hence v = v = 1
1+δ

. Clearly, no other strategies can generate this payoff in
every subgame.6

6While being a nice result it does not necessarily hold anymore when we change the
game. For example, if both players make simultaneous proposals then any division is a
SPE. Also, it no longer holds when there are several players.
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Lecture XIII: Repeated Games

Markus M. Möbius

April 19, 2004

• Gibbons, chapter 2.3.B,2.3.C

• Osborne, chapter 14

• Osborne and Rubinstein, sections 8.3-8.5

1 Introduction

So far one might get a somewhat misleading impression about SPE. When
we first introduced dynamic games we noted that they often have a large
number of (unreasonable) Nash equilibria. In the models we’ve looked at so
far SPE has ’solved’ this problem and given us a unique NE. In fact, this is
not really the norm. We’ll see today that many dynamic games still have a
very large number of SPE.

2 Credible Threats

We introduced SPE to rule out non-credible threats. In many finite horizon
games though credible threats are common and cause a multiplicity of SPE.

Consider the following game:
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B

M

T

L C R

3,1 0,0 5,0

2,1 1,2 3,1

1,2 0,1 4,4

The game has three NE: (T,L), (M,C) and
(

1
2
T + 1

2
M, 1

2
L + 1

2
C

)
Suppose that the players play the game twice and observe first period

actions before choosing the second period actions. Now one way to get a
SPE is to play any of the three profiles above followed by another of them
(or same one). We can also, however, use credible threats to get other actions
played in period 1, such as:

• Play (B,R) in period 1.

• If player 1 plays B in period 1 play (T,L) in period 2 - otherwise play
(M,C) in period 2.

It is easy to see that no single period deviation helps here. In period 2 a
NE is played so obviously doesn’t help.

• In period 1 player 1 gets 4 + 3 if he follows strategy and at most 5 + 1
if he doesn’t.

• Player 2 gets 4 + 1 if he follows and at most 2+1 if he doesn’t.

Therefore switching to the (M,C) equilibrium in period 2 is a credible threat.
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3 Repeated Prisoner’s Dilemma

Note, that the PD doesn’t have multiple NE so in a finite horizon we don’t
have the same easy threats to use. Therefore, the finitely repeated PD has a
unique SPE in which every player defects in each period.

2,−1 0,0

1,1 −1,2C

D

C D

In infinite horizon, however, we do get many SPE because other types of
threats are credible.

Proposition 1 In the infinitely repeated PD with δ ≥ 1
2

there exists a SPE
in which the outcome is that both players cooperate in every period.

Proof: Consider the following symmetric profile:

si (ht) =

{
C

If both players have played C in every
period along the path leading to ht.

D If either player has ever played D.

To see that there is no profitable single deviation note that at any ht

such that si (ht) = D player i gets:

0 + δ0 + δ20 + ..

if he follows his strategy and

−1 + δ0 + δ20 + ..

if he plays C instead and then follows si.

At any ht such that si (ht) = C player i gets:

1 + δ1 + δ21 + .. =
1

1− δ

3



if he follows his strategy and

2 + δ0 + δ20 + .. = 2

if he plays D instead and then follows si.

Neither of these deviations is worth while if δ ≥ 1
2
. QED

Remark 1 While people sometimes tend to think of this as showing that
people will cooperate in they repeatedly interact if does not show this. All it
shows is that there is one SPE in which they do. The correct moral to draw
is that there many possible outcomes.

3.1 Other SPE of repeated PD

1. For any δ it is a SPE to play D every period.

2. For δ ≥ 1
2

there is a SPE where the players play D in the first period
and then C in all future periods.

3. For δ > 1√
2

there is a SPE where the players play D in every even
period and C in every odd period.

4. For δ ≥ 1
2

there is a SPE where the players play (C,D) in every even
period and (D,C) in every odd period.

3.2 Recipe for Checking for SPE

Whenever you are supposed to check that a strategy profile is an SPE you
should first try to classify all histories (i.e. all information sets) on and
off the equilibrium path. Then you have to apply the SPDP for each class
separately.

• Assume you want to check that the cooperation with grim trigger pun-
ishment is SPE. There are two types of histories you have to check.
Along the equilibrium path there is just one history: everybody coop-
erated so far. Off the equilibrium path, there is again only one class:
one person has defected.
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• Assume you want to check that cooperating in even periods and defect-
ing in odd periods plus grim trigger punishment in case of deviation
by any player from above pattern is SPE. There are three types of his-
tories: even and odd periods along the equilibrium path, and off the
equilibrium path histories.

• Assume you want to check that TFT (’Tit for Tat’) is SPE (which it
isn’t - see next lecture). Then you have you check four histories: only
the play of both players in the last period matters for future play - so
there are four relevant histories such as player 1 and 2 both cooperated
in the last period, player 1 defected and player 2 cooperated etc.1

Sometimes the following result comes in handy.

Lemma 1 If players play Nash equilibria of the stage game in each period
in such a way that the particular equilibrium being played in a period is a
function of time only and does not depend on previous play, then this strategy
is a Nash equilibrium.

The proof is immediate: we check for the SPDP. Assume that there is a
profitable deviation. Such a deviation will not affect future play by assump-
tion: if the stage game has two NE, for example, and NE1 is played in even
periods and NE2 in odd periods, then a deviation will not affect future play.1

Therefore, the deviation has to be profitable in the current stage game - but
since a NE is being played no such profitable deviation can exist.

Corollary 1 A strategy which has players play the same NE in each period
is always SPE.

In particular, the grim trigger strategy is SPE if the punishment strategy in
each stage game is a NE (as is the case in the PD).

4 Folk Theorem

The examples in 3.1 suggest that the repeated PD has a tremendous number
of equilibria when δ is large. Essentially, this means that game theory tells
us we can’t really tell what is going to happen. This turns out to be an
accurate description of most infinitely repeated games.

1If a deviation triggers a switch to only NE1 this statement would no longer be true.
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Let G be a simultaneous move game with action sets A1, A2, .., AI and
mixed strategy spaces Σ1, Σ2,.., ΣI and payoff function ũi.

Definition 1 A payoff vector v = (v1, v2, .., vI) ⊂ <I is feasible if there exists
action profiles a1, a2, ..,ak ∈ A and non-negative weights ω1,..,ωI which sum
up to 1 such that

vi = ω1ũi

(
a1

)
+ ω2ũi

(
a2

)
+ .. + ωkũi

(
ak

)
+

Definition 2 A payoff vector v is strictly individually rational if

vi > vi = min
σ−i∈Σ−i

max
σi(σ−i)∈Σi

ũi (σi (σ−i) , σ−i) (1)

We can think of this as the lowest payoff a rational player could ever get
in equilibrium if he anticipates his opponents’ (possibly non-rational) play.

Intuitively, the minmax payoff vi is the payoff player 1 can guarantee to
herself even if the other players try to punish her as badly as they can. The
minmax payoff is a measure of the punishment other players can inflict.

Theorem 1 Folk Theorem. Suppose that the set of feasible payoffs of G is
I-dimensional. Then for any feasible and strictly individually rational payoff
vector v there exists δ < 1 such that for all δ > δ there exists a SPE x∗ of
G∞ such that the average payoff to s∗ is v, i.e.

ui (s
∗) =

vi

1− δ

The normalized (or average) payoff is defined as P = (1− δ) ui (s
∗). It is the

payoff which a stage game would have to generate in each period such that
we are indifferent between that payoff stream and the one generates by s∗:

P + δP + δ2P + ... = ui (s
∗)

4.1 Example: Prisoner’s Dilemma

• The feasible payoff set is the diamond bounded by (0,0), (2,-1), (-1,2)
and (1,1). Every point inside can be generated as a convex combina-
tions of these payoff vectors.
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• The minmax payoff for each player is 0 as you can easily check. The
other player can at most punish his rival by defecting, and each player
can secure herself 0 in this case.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

(1−δ)u
1

(1
−δ

)u
2

Hence the theorem says that anything in this trapezoid is possible. Note,
that the equilibria I showed before generate payoffs inside this area.

4.2 Example: BOS

Consider the Battle of the Sexes game instead.

0,0 1,2

2,1 0,0F

O

F O
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Here each player can guarantee herself at least payoff 2
3

which is the pay-
off from playing the mixed strategy Nash equilibrium. You can check that
whenever player 2 mixes with different probabilities, player 1 can guarantee
herself more than this payoff by playing either F or O all the time.

4.3 Idea behind the Proof

1. Have players on the equilibrium path play an action with payoff v (or
alternate if necessary to generate this payoff).2

2. If some player deviates punish him by having the other players for T
periods choose σ−i such that player i gets vi.

3. After the end of the punishment phase reward all players (other than i)
for having carried out the punishment by switching to an action profile
where player i gets vP

i < vi and all other players get vP
j + ε.

2For example, in the BoS it is not possible to generate
(

3
2 , 3

2

)
in the stage game even

with mixing. However, if players alternate and play (O,F) and then (F,O) the players can
get arbitrarily close for large δ.
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Lecture XIV: Applications of Repeated Games

Markus M. Möbius

April 28, 2004

• Gibbons, chapter 2.3.D,2.3.E

• Osborne, chapter 14

1 Introduction

We have quite thoroughly discussed the theory of repeated games. In this
lecture we discuss applications. The selection of problems is quite eclectic
and include:

• collusion of firms

• efficiency wages

• monetary policy

• theory of gift giving

For all these applications we analyze equilibria which are similar to the
basic grim-trigger strategy equilibrium which we first studied in the repeated
Prisoner’s Dilemma context.

2 Collusion of Firms

2.1 Some Notes on Industrial Organization

Industrial organization is a subfield of economics which concerns itself with
the study of particular industries. The standard setting is one where there
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are many consumers but only a few firms (usually more than one). This
environment is called an oligopoly (in contrast to a monopoly).

Classical economics usually assumes perfect competition where there are
many firms and consumers and all of them are price-takers. This simplifies
analysis a lot because it gets rid of strategic interactions - a firm which is
small relative to the market and hence has an infinitesimal impact on price
does not have to worry about the reactions of other firms to its own actions.

Oligopolies are more intriguing environments because strategic interac-
tions do matter now. Therefore, game theory has been applied extremely
successfully in IO during the past 30 years.

2.2 The Bertrand Paradox

We have already discussed static Bertrand duopoly where firms set prices
equal to marginal cost (as long as they have symmetric costs). Many economists
think that this result is counterintuitive - if it would literally hold then firms
would not be able to recoup any fixed costs (such as R&D, building a factory
etc.) and would not develop products in the first place.

One solution is to assume that firms engage instead in Cournot compe-
tition. However, the assumption that firms set prices rather than quantities
is appropriate for industries without significant capacity constraints (such as
joghurts versus airplanes).

Repeated games provide an alternative resolution of the Bertrand para-
dox: firms can ‘cooperate’ and set prices above marginal cost in each period.
If a firm defects they both revert to static Nash pricing at marginal cost.
This equilibrium is an example of tacit collusion.1

2.3 Static Bertrand

Let’s recall the static Bertrand game:

• Two firms have marginal cost of production c > 0.

• They face a downward sloping demand curve q = D(p).

• Firms can set any price p ≥ 0.

The unique NE of the game is p1 = p2 = c.

1It’s called tacit collusion because it is a Nash equilibrium and self-enforcing.
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Remark 1 The finitely repeated Bertrand game still has a unique SPE in
which firms set price equal to marginal cost in each period. This follows from
the fact the NE of the static game is unique - hence there are no credible
threats to enforce any other equilibrium.

2.4 Infinitely Repeated Bertrand game

Assume firms have a discount factor δ.2 Assume that the monopoly price is
pm > 0 and the monopoly profit is ΠM . The monopoly profit is the maximum
of a single firm’s profit function:

ΠM = max
p≥0

(p− c)D(p) (1)

The monopoly price pm is the maximizer of this function. Finally, we assume
that if two firms set equal price they divide sales equally amongst them.

Then the following will be a SPE which ensures that both firms together
will make the same profit as a monopolist (which is the largest profit at-
tainable in the industry and hence the ‘best possible’ equilibrium for the
firms).

1. Each firm sets its price equal to pm in period t = 1 and each subse-
quent period as long as no firm has deviated from this price in previous
periods.

2. After a deviation firm sets price equal to c.

This is essentially another version of the familiar grim-trigger strategy
equilibrium. There are two types of histories which we have to check - those
on the equilibrium path and those off. As usual we use the SPDP.

1. The best deviation on the equilibrium path is to undercut the other
firm slightly and capture the entire market for one period. Afterwards,
firms set price equal to marginal cost and hence make zero profit. The
payoff of this deviation is ΠM . The profit from following the equilibrium
strategy instead is:

ΠM

2
+ δ

ΠM

2
+ δ2 ΠM

2
+ δ3 ΠM

2
+ .. =

ΠM

2

1− δ
(2)

2Firms usually discount by the interest rate of the economy such that δ = 1
1+r .
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For the original strategy to be an SPE the deviation has to be non-
profitable:

ΠM ≤
ΠM

2

1− δ
(3)

This will be satisfied as long as δ ≥ 1
2
.

2. Off the equilibrium path there is no profitable deviation. If a firm sets
price above c it will still make zero profit. If it sets price below c it will
make negative profits because it will sell at a loss. Note, that as usual
checking for SPDP in the trigger phase is easy.

2.5 Rotemberg-Saloner counter-cyclical Pricing

Rotemberg and Saloner modified the basic repeated Bertrand model to allow
for booms and recessions. The setup is the following:

• In each period demand can be either high or low. Firms know whether
demand is high or low. The profit-maximizing prices in both states are
pm

L and pm
H and corresponding profits are ΠM

L < ΠM
H .

• The ‘best’ equilibrium would be again one in which firms set the monopoly
price in each period - they would then imitate a monopoly firm. How-
ever, we now have to check two types of histories on the equilibrium
path - those in which demand is high and those where it is low.

• In the high-demand information set the following has to hold:

ΠM
H ≤ ΠM

H

2
+

δ

1− δ

[
p
ΠM

H

2
+ (1− p)

ΠM
L

2

]

︸ ︷︷ ︸
average profit per period

(4)

In the low-demand information this condition holds:

ΠM
L ≤ ΠM

L

2
+

δ

1− δ

[
p
ΠM

H

2
+ (1− p)

ΠM
L

2

]

︸ ︷︷ ︸
average profit per period

(5)
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• It’s easy to see that only the first condition implies the second one: the
incentive to deviate and undercut the rival firm is strongest in high-
demand. From the first condition we can calculate the cutoff value δ∗

such that both inequalities hold for any δ > δ∗:

ΠM
H =

δ∗

1− δ∗
[
pΠM

H + (1− p)ΠM
L

]
(6)

• It is also easy to check that the cutoff value δ∗ is greater than 1
2

- in
other words, collusion is harder than in a world where there are no
booms and can only be sustained for δ > δ∗ > 1

2
.

• What if δ∗ > δ > 1
2
?

For these intermediate values of δ some form of collusion can still be
maintained as long as firms set prices below the monopoly price in the high-
demand state. Intuitively, this reduces the incentive to defect in the high-
demand state.

The easiest way to see this is to assume that firms reduce price in the
high-demand state to such an extent that they make the same profit as in
the low-demand state. In that case we are back to the previous equilibrium
which can be sustained for δ > 1

2
.

However, firms will be able to sustain higher profits than ΠM
L in the high-

demand state for δ∗ > δ > 1
2
. The profit Πδ

H which can (just) be sustained
in the high-demand state satisfies:

Πδ
H =

δ

1− δ

[
pΠδ

H + (1− p)ΠM
L

]
(7)

Note that Πδ
L → ΠM

L as δ → 1
2
.

Remark 2 One can show that no collusion can be sustained for δ < 1
2
.

Remark 3 This model implies counter-cyclical pricing - firms have to cut
prices in booms below the monopoly price in order to prevent collusion from
breaking down (by making defection too attractive). Note, that this does not
literally mean that prices decrease in booms - it just means that the profit
markup is less than the markup during recessions. Also note, that with perfect
Bertrand competition in each period we would see prices equal to marginal
costs in both booms and recessions.
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3 Efficiency Wages (Stiglitz)

Stiglitz studied the question why firms pay workers often more than have to
pay in order to prevent the workers from leaving the firm.

3.1 One-Stage Shirking Model

• A firm and a worker play a two period game.

• In the first period the firm sets a wage w.

• In the second period the worker observes the wage and decides whether
to accept or reject the job. If she rejects she has an outside option w0.
If she accepts she can exert effort or exert no effort. If she exerts no
effort she will produce output y > 0 with probability p and 0 otherwise.
If she exerts effort she will produce y for sure (this implies that output
is 0 is a sure sign of shirking). Exerting effort has cost e to the firm.

• Clearly, the firm cannot enforce effort - there will be shirking all the
time.

• The firm only has to pay the worker w0 in order to employ the worker -
paying a higher wage makes no sense because the worker shirks anyway.

Assumption 1 We assume y − e > w0 > py. This makes exerting effort
socially efficient and shirking less efficient than the outside option. It also
means, that the firm would not employ the worker in the first place because
the minimum wage would exceed the expected output of the worker!

3.2 Repeated Interactions in Stiglitz’ Model

How can the firm prevent the worker from shirking? The following grim-
trigger type strategy accomplishes the trick:

1. First of all, the firm has to pay the worker a higher wage w∗ > w0 -
otherwise the worker has nothing to lose from shirking.

2. Second, the firm has to fire the worker is it detects shirking. Since the
worker is paid above his outside he will perceive this as the threat of
punishment.
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This is why this model can explain efficiency wages (above a worker’s
outside option).

We use SPDP to check that this is indeed an SPE for sufficiently patient
workers and firms.

A worker who exerts effort gets surplus V e = w∗−e
1−δ

(discounted over time)
where w∗ is his per period wage. If the worker shirks for one period he gets
the following payoff V s:

V s = w∗ + δ

[
pVe + (1− p)

w0

1− δ

]
(8)

In equilibrium we need V e ≥ V s. This implies:

w∗ ≥ w0 +
1− δp

δ(1− p)
e (9)

The best strategy of the firm is clearly to set w∗ equal to this cutoff value.

Remark 4 The markup 1−δp
δ(1−p)

e is the efficiency premium which the worker

gets to make detection costly to him (because he loses the excess rents he
enjoys in his job).

4 Barro-Gordon Model of Monetary Policy

This model nicely captures how short-sighted policy makers succumb to the
sweet poison of inflation to kick-start an ailing economy. The repeated ver-
sion of the Barro-Gordon model illustrates the usefulness of the repeated
game paradigm in applied economics.

4.1 The Static Barro-Gordon Model of Inflation

• There are two periods - in the first period firms choose their expecta-
tions πe of inflation. In the second period the central bank observed
πe and chooses actual inflation π. The timing reflects the idea that the
central bank observes more and better data than firms.

• We think of firms as a single player (say because they communicate
with each other and form expectations collectively). Firms maximize
their utility function −(π − πe)2 and hence optimally choose expected

7



inflation to be actual inflation π. The reason is simple: firms base their
pricing and wages on expected inflation and they are locked into these
decision for a certain period of time (this is intuitive with wages since
firms negotiate only periodically with unions and workers). If inflation
is higher their prices tend to be too low. If inflation is lower than
expected then their prices can be too high.

• The central bank faces the following utility function W :

W = −cπ2 − (y − y∗)2 (10)

Here, y is the output/GDP of the economy and y∗ is the full employ-
ment output. Policy makers prefer that π = 0 and y = y∗. However,
they can only control inflation (through interest rates) and they face
the following inflation/output tradeoff:

y = by∗ + d(π − πe) (11)

where b < 1: the idea is that because of various frictions in the economy
(monopoly power etc.) the economy operates below full employment
(since b < 1). Policy makers can boost GDP by creating surprise
inflation - i.e. by setting π above πe. The idea is that the central
bank can make more money available to banks which can lend it out to
companies. This boosts output but it also increases inflation because
companies will respond to the boom partly by raising prices. Rising
inflation is disliked by policy makers because it devalues pensions and
savings.

The model captures nicely the dilemma of the central bank. It has just
one instrument with which it tries to control to objectives - maximizing
output and minimizing inflation.

What inflation rate will the central bank set? We can substitute for y
and get:

W (π, πe) = −cπ2 − [(b− 1)y∗ + d(π − πe)]2 (12)

We can maximize with respect to π and find that the best response of the
central bank to inflationary expectations πe is:

π∗(πe) =
d

c + d2
[(1− b)y∗ + dπe] (13)

Note:
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• Although the government likes zero inflation it will not be able to im-
plement it even if the private sector expects zero inflation. The gov-
ernment cannot resist to boost inflation a little bit in order to increase
output.

In the SPE the government will play its best response to inflationary
expectations. The private sector can predict the government’s response and
will set inflationary expectation such that:

πS = πe = π∗(πe) (14)

We can solve this fixed point and obtain:

πe =
d(1− b)

c
y∗ (15)

Remark 5 Note, that the government is not able to create surprise infla-
tion in equilibrium because the private sector will anticipate the government’s
response. The government would be unequivocally better off if it could commit
to zero inflation ex ante - in both cases it would create output by∗ but with
commitment it could improve its utility by having lower inflation.

Remark 6 The government can decrease inflation by increasing c. At first,
this might sound funny: isn’t c a parameter of the political process which can-
not be easily manipulated? True - but government can still (i) hire a tough
central banker who only cares about inflation lowering and (ii) make the cen-
tral bank independent such that the central banker rather than the government
determines inflation. These two policies effectively increase c: the govern-
ment can commit to lower inflation by pursing central bank independence plus
hiring a tough banker.

Remark 7 The last insight is extremely important: a decision maker who
has a commitment problem can often benefit from (credibly) delegating deci-
sion making to an agent who has different preferences than he has. Note, that
no decision maker would ever do this if he were faced with a simple decision
problem: the agent would make different choices which would decrease the
decision maker’s utility. However, in a game this negative direct effect might
be outweighed by the commitment effect.
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4.2 Repeated Barro-Gordon Model

A different solution to the government’s commitment problem is a repeated
interaction setting. Assume that the private sector and the government play
the Barro-Gordon game in many periods (call them ‘years’).

Then look at the following grim-trigger type strategies:

• The private sector in period 1 and all subsequent periods in which no
deviation has occurred previously sets πe = 0.

• The government in period 1 and all subsequent periods in which no
deviation has occurred previously sets π = 0.

• If there is any deviation from this pattern both the government and
the central bank revert to the equilibrium in the stage game.

We can use the SPDP to check that this is an equilibrium. The only
condition which is critical is the government’s willingness to stick to the
equilibrium and not inflate the economy. If it sticks to the equilibrium it
gets 1

1−δ
W (0, 0). If it deviates the government gets at best W (π∗(0), 0) +

δ
1−δ

W (πS, πS) (assuming that the government chooses its best deviation).
So we want:

1

1− δ
W (0, 0) ≥ W (π∗(0), 0) +

δ

1− δ
W (πS, πS) (16)

Remark 8 In order to use repeated game effects to solve the government’s
commitment problem the government has to give itself a sufficiently long time
horizon (beyond the 4-5 year term) which is equivalent to making sure that it
is sufficiently patient (δ large). One way is to give central bankers very long
terms such that their discount factor is sufficiently large.

5 “Gifts”

We slightly modify the standard repeated Prisoner’s Dilemma model. This
model gives a rationale for why people give gifts which is a common phe-
nomenon in almost every culture. It explains a few other things as well:

• The model also explains why gifts should be objects rather than money.
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• The model predicts that the best gifts are those which are bought in
over-priced gift-shops at Harvard Square and that they should be (and
look) expensive but have little utility to the recipient.

• Finally, the model predicts that burning time in a pointless and boring
lunch or dinner with a business acquaintance is actually time well spent
(or burnt).

5.1 Prisoner’s Dilemma with Rematching

We consider the following environment:

• There are infinitely many agents.

• Time is discrete and agents discount time at rate δ. At the begin-
ning of each period unaligned agents can match with a random partner
(another non-aligned agent).

• Agents in a partnership play a repeated Prisoner’s dilemma.

• At the end of each period a relationship breaks up with exogenous
probability s (separation rate). This ensures that there is always a
supply of agents willing to match.

• Agents can also break off a relationship unilaterally at the end of a
period.

• Agents can only observe the history of interactions with the current
partner - in particular they cannot observe the past behavior of an agent
with whom they just matched. It does not really matter if they keep
remembering the history of agents with whom they previously matched
- the idea is that once a relationship breaks up there is essentially zero
chance of meeting up with the same partner again. Therefore, it does
not matter if agents remember the history of interactions with past
partners.

This model is a model of finding and breaking up with ‘friends’. There
are many potential friends out there and the goal is to play a repeated game
of cooperation with a partner.

Assume the following simple payoff structure for the stage game:

11



4,−1 0,0

3,3 −1,4C

D

C D

Now look at one relationship in isolation. Cooperation between two friends
is sustainable through a grim-trigger strategy as long as:

4 ≤ 3

1− δ(1− s)
(17)

This implies that δ > 1
4(1−s)

.
However, there is a problem: an agent could defect in the first period,

break immediately off his relationship and then rematch the next period to
play another game of cooperation with the next partner. The ability to
rematch makes cooperation an unsustainable equilibrium. Is there a way
out?

5.2 Gifts

There is a simple solution to the sequential cheating problem. Both players
could start a relationship by ‘burning’ some utility g > 0 - call this a gift.
Gifts have to be costly to the sender but useless to the recipient (or at
least less useful than the cost to the sender). Intuitively, gifts establish that
an agent is ‘serious’ about the relationship. They also introduce a friction
into the rematching process which makes it costly for an agent to break
off a relationship. If the following two conditions hold gifts can ensure the
existence of a cooperative equilibrium amongst friends:

1. The gift g has to fulfill g ≥ 1. By breaking off and rematching the
agent gets a stream of utility 4− g in each period versus 3 by staying
in the relationship with a partner until it breaks up exogenously.

12



2. Continuing a relationship has to be more profitable than breaking it
up and staying unaligned:

4 ≤ 3

1− δ(1− s)
(18)

This gives the same inequality δ ≥ 1
4(1−s)

.

3. Finally, starting a relationship in the first place has to be more prof-
itable than not starting a relationship:

3

1− δ(1− s)
− g ≥ 0 (19)

This will be the case unless agents are too impatient or the separation
probability s is too large.

Remark 9 Good presents are expensive but useless - hence money is a bad
present.

Remark 10 An alternative to gifts is to delay the onset of a new relation-
ship. For example, new relationships might require a probationary period of
several periods during which partners cannot rematch and cannot cooperate.
This is equivalent to both of them ‘burning’ utility. Hence this models of gifts
might also be interpreted as an explanation for rituals and social norms in
which partners can only start to do business with each after a certain period of
time. While such a strategy would be inefficient in a world in which partners
cannot break up it makes sense if there is the risk of breakup and partners
realigning with others. Probation periods make such exploitative strategies
costly and hence less attractive.

13



Lecture XV: Games with Incomplete
Information

Markus M. Möbius

April 28, 2004

• Gibbons, chapter 3

• Osborne, chapter 9

1 Introduction

Informally, a game with incomplete information is a game where the game
being played is not common knowledge. This idea is tremendously important
in practice where its almost always a good idea to assume that something
about the game is unknown to some players. What could be unknown?

1. Payoffs: In a price or quantity competition model you may know that
your rival maximizes profits but now what his costs are (and hence his
profits).

2. Identity of other players: R&D race between drug companies - who
else will come up with the same drug?

3. What moves are possible: What levels of quality can rivals in a
quality competition choose?

4. How does the outcome depend on action: Workers work/shirk
don’t know probability of getting caught because product fails.

1



2 Examples

2.1 Example I: Crazy Incumbent

Think of a standard entry game where the incumbent is ’crazy’ with proba-
bility 1− p and rational with probability p. The normal incumbent faces the
standard entry game from lecture 11:

2

In Out

1

F A

2

0

−1

−1

1

1

If the incumbent is crazy he will always want to fight because is is facing
a different subgame:

2

In Out

1

F A

2

0

1

−1

−1

1

2



2.2 Example II: Auction

Two bidders are trying to purchase the same item at a sealed bid auction.
The players simultaneously choose b1 and b2 and the good is sold to the
highest bidder at his bid price (assume coin flip if b1 = b2). Suppose that the
players’ utilities are

ui (bi, b−i) =





vi − bi if bi > b−i
1
2
(vi − bi) if bi = b−i

0 if bi < b−i

2.3 Example III: Public Good

Two advisors of a graduate student each want the student to get a job at
school X. Each can ensure this by calling someone on the phone and lying
about how good the student is. Suppose the payoffs are as shown because
each advisor gets utility 1 from the student being employed but has a cost
of making the phone call.

Dont

Call

Call Dont

1−c
1
,1−c

2
1−c

1
,1

1,1−c
2 0,0

Assume that the actions are chosen simultaneously and that players know
only their own costs. They have prior that c−i ∈ U [c, c].

3

The crucial incomplete information is that while each player knows his own 
valuation, he does not know his rival’s. Assume, each has a prior that his 
rival’s valuation is uniform on [0, 1] and that this is common knowledge. Is 
hisTRUE？



Alternatively, we could have player 1’s cost known to all (c1 = 1
2
) but

c2 ∈ {c, c} known only to player 2.
Or, player 1 is a senior faculty member who knows from experience the

cost of such phone calls (c1 = 1
2
,c2 = 2

3
). Player 2 is new assistant professor

who has priors c1, c2 ∈ U [0, 2].

3 Definitions

Definition 1 A game with incomplete information G = (Φ, S, P, u) consists
of

1. A set Φ = Φ1× ...×ΦI where Φi is the (finite) set of possible types for
player i.1

2. A set S = S1 × ...× SI giving possible strategies for each player.

3. A joint probability distribution p (φ1, .., φI) over the types. For finite
type space assume p (φi) > 0 for all φi ∈ Φi.

4. A payoff function ui : S × Φ → <.

It’s useful to discuss the types in each of our examples.

• Example I: Φ1 = normal, Φ2 ∈ {π maximizer, crazy}
• Example II:Φ1 = Φ2 = (0, 1)

• Example III:Φ1 = Φ2 = [c, c]

Note that payoffs can depend not only on your type but also on your rival’s
type as well.

Players know their own types but not the other players’ types.
To analyze games of incomplete information we rely on the following

observation (Harsanyi):
Observation: Games of incomplete information can be thought of as

games of complete but imperfect information where nature makes the first
move and not everyone is informed about nature’s move, i.e. nature chooses
Φ but only reveals φi to player i.

1Note, that the player i knows his type.
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N
Rational p Crazy 1−p

2

In Out

2

In Out

1

F A

1

F A

2
0

2
0

−1
−1

1
1

1
−1

−1
1

Think of nature simply as another player who rather than maximizing
chooses a fixed mixed strategy.

This observation should make all of the following definitions seem com-
pletely obvious. They just say that to analyze these games we may look at
NE of the game with Nature as another player.

Definition 2 A Bayesian strategy for player i in G is a function fi : Φi →
Σi. Write SΦi for the set of Bayesian strategies.2

Definition 3 A Bayesian strategy profile (f ∗1 , .., f ∗I ) is a Bayesian Nash equi-
librium if

f ∗i ∈ arg max
fi∈S

Φi
i

∑

φi,φ−i

ui

(
fi (φi) , f ∗−i (φ−i) ; φi, φ−i

)
p (φi, φ−i)

for all i or equivalently if for all i,φi,si∑

φ−i

ui

(
f ∗i (φi) , f ∗−i (φ−i) ; φi, φ−i

)
p (φi, φ−i) ≥

∑

φ−i

ui

(
si, f

∗
−i (φ−i) ; φi, φ−i

)
p (φi, φ−i)

This just says that your maximize expected payoff, and given that you
know your type (that all have positive probability) this is equivalent to saying
you maximize conditional on each possible type.

Remark 1 A Bayesian Nash equilibrium is simply a Nash equilibrium of
the game where Nature moves first, chooses φ ∈ Φ from a distribution with
probability p (φ) and reveals φi to player i.

2Note, that a Bayesian strategy is simply an extensive form strategy where each type
is treated as a distinct information set.
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4 Solved examples

4.1 Public good I

Suppose player 1 is known to have cost c1 < 1
2
. Player 2 has cost c with

probability p, c with probability 1 − p. Assume that 0 < c < 1 < c and
p < 1

2
.

Dont

Call

Call Dont

1−c
1
,1−c

2
1−c

1
,1

1,1−c
2 0,0

Then the unique BNE is:

• f ∗1 = Call

• f ∗2 (c) = Don’t Call for all c.

Proof: In a BNE each type of player must play a BR so for the type c of
player 2 calling is strictly dominated:

u2 (s1, call; c) < u2 (s1, Dont; c)

for all s1.

So f ∗2 (c) = Dont.

For player 1:

u1 (Call, f ∗2 ; c1) = 1− c1

u1 (Dont, f ∗2 ; c1) = pu1 (Dont, f ∗2 (c) ; c1) + (1− p) u1 (Dont, Dont; c1)

≤ p + (1− p) 0 = p

6



Because 1− c1 > p we know f ∗1 (c1) = Call.

For the type c of player 2 we have:

u2 (f ∗1 , Call; c) = 1− c

u2 (f ∗1 , Dont; c) = 1

because f ∗1 = Call. So f ∗2 (c) = Dont.

This indicates this is the only possible BNE and our calculations have
verified that it does actually work.

Process I’ve used is like iterated dominance.

4.2 Public Goods II

In the public good game suppose that c1 and c2 are drawn independently
from a uniform distribution on [0, 2]. Then the (essentially) unique BNE is

f ∗i (ci) =

{
Call if ci ≤ 2

3

Don’t if ci > 2
3

Proof: Existence is easy - just check that each is using a BR given that
his rival calls with probability 1

3
and doesn’t call with probability 2

3
.

I’ll show uniqueness to illustrate how to find the equilibrium.

Observation: If f ∗i (ci) = Call then f ∗i (c′i) = Call for all c′i < ci.

To see this write z−i for Prob
{
f ∗−i (c−i) = Call

}
. If f ∗i (ci) = call then

Ec−i
ui

(
Call, f ∗−i (c−i) ; ci

) ≥ Ec−i
ui

(
Dont, f ∗−i (c−i) ; ci

)

1− ci ≥ z−i

This clearly implies that for c′i < ci

Ec−i
ui

(
Call, f ∗−i (c−i) ; c′i

)
= 1− c′i > Ec−i

ui

(
Dont, f ∗−i (c−i) ; c′i

)
= z−i

The intuition is that calling is more attractive if the cost is lower.
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In light of observation a BNE must be of the form:3

f ∗1 (c1) =

{
Call if c1 ≤ c∗1
Don’t if c1 > c∗1

f ∗2 (c2) =

{
Call if c2 ≤ c∗2
Don’t if c2 > c∗2

For these strategies to be a BNE we need:

1− ci ≥ z−i for all ci < c∗i
1− ci ≤ z−i for all ci > c∗i

Hence 1− c∗i = z−i.

Because c−i is uniform on [0, 2] we get z−i = Prob
{
c−i < c∗−i

}
=

c∗−i

2
.

We have:

1− c∗1 =
c∗2
2

1− c∗2 =
c∗1
2

It is easy to see that the unique solution to this system of equations is
c∗1 = c∗2 = 2

3
.

Remark 2 The result here is common in public goods situations. We get
inefficient underinvestment because of the free rider problem. Each wants
the other to call.

3The cutoff values themselves are indeterminate - agents might or might not call. In
this sense the equilibrium won’t be unique. However, the cutoff values are probability zero
events and hence the strategy at these points won’t matter.
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Lecture XVI: Auctions

Markus M. Möbius

May 6, 2004

• Gibbons, chapter 3

• Osborne, chapter 9

• Paul Klemperer’s website at http://www.paulklemperer.org/ has fan-
tastic online material on auctions and related topics.

1 Introduction

We already introduced a private-value auction with two bidders last time as
an example for a game of imperfect information. In this lecture we expand
this definition a little bit.

In all our auctions there are n participants and each participant has a valuation
vi and submits a bid bi (his action).

The rules of the auction determine the probability qi(b1, .., bn) that agent i
wins the auction and the expected price pi(b1, .., bn) which he pays. His utility
is simple ui = qivi − pi.

a

aThe agent is risk-neutral - new issues arise if the bidders are risk-averse.

There are two important dimensions to classify auctions which are based
on this template:

1



1. How are values vi drawn? In the private value environment each vi is
drawn independently from some distribution Fi and support [v, v]. For
our purposes we assume that all bidders are symmetric such that the
vi are i.i.d. draws from a common distribution F .1 In the correlated
private value environment the vi are not independent - for example if
I have a large vi the other players are likely to have a large value as
well. In the pure common value environment all bidders have the same
valuation vi = vj.

2

2. What are the rules? In the first price auction the highest bid wins
and the bidder pays his bid. In the case of a tie a fair coin is flipped
to determine the winner.3 In the second price auction the highest
bidder wins but pays the second-highest bid. In the all-pay auction all
bidders pay and the highest bidder wins. All these three auctions are
static games. The most famous dynamic auction is the English auction
where the price starts at zero and starts to rise. Bidders drop out
until the last remaining bidder gets the auction.4 The Dutch auction
is the opposite of the English - the price starts high and decreases
until the first bidder jumps in to buy the object. The Dutch auction
is strategically equivalent to the first-price auction. Note, that in May
2004 Google decided to use a Dutch auction for its IPO.

We will usually assume symmetric private value environments.

1Typically we assume that the distribution is continuous and has no atoms.
2There are much more general environments. A very general formulation which en-

compasses both private and common value auctions is due to Wilson (1977). Each bidder
gets a signal ti about her valuation which is drawn from some distribution gi(ti, s) where
s is a common noise term for all players. The players value is then a function v(ti, s). If
vi = ti we get back the private value environment. Similarly, if vi = v(s) we have the pure
common value environment.

3In most equilibria ties are no problem because they occur with zero probability.
4The second price auction with private values is very similar to the English auction

where the price starts at zero and increases continuously until the last bidder drops out
(he pays essentially the second highest bid)

2



2 Solving Common Private Value Auctions

2.1 First-Price Auction

We focus on monotonic equilibria bi = fi(vi) such that fi is strictly increasing
(one can show this always holds). It will be simplest to work just with
two bidders but the method can easily be extended to many bidders. We
also assume for simplicity that values are drawn i.i.d. from the uniform
distribution over [0, 1] (this can also be generalized - the differential equation
becomes more complicated then).

The probability of player i winning the auction with bidding b is

Prob(fj(vj) ≤ b) = Prob(vj ≤ f−1
j (b)) = F (f−1

j (b)) = f−1
j (b) (1)

The last equation follows because F is the uniform distribution.
The expected utility from bidding b is therefore:

Prob(fj(vj) ≤ b)(vi − b) = f−1
j (b)(vi − b) (2)

The agent will choose b to maximize this utility. We differentiate with respect
to b and use the first-order condition:

1

f ′j(f
−1
j (b))

(vi − b)− f−1
j (b) = 0 (3)

From now on we focus on symmetric equilibria such that fi = fj. We know
that in equilibrium b = fi(vi) such that:

1

f ′(vi)
(vi − f(vi))− vi = 0 (4)

This is a differential equation and can be rewritten as follows:

vi = vif
′(vi) + f(vi) (5)

We can integrate both sides and get:

1

2
v2

i + K = vif(vi) (6)

where K is a constant. This gives us finally:

f(vi) =
1

2
vi +

K

vi

(7)
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You can check that f(0) = 0 - the player with a zero valuation should never
bid positive amounts. Hence K = 0 is the only possible solution.

If you solve this exercise more generally for n bidders you get the following
bidding function (uniform distribution):

f(vi) =
n− 1

n
vi (8)

This makes sense - as you increase the number of bidders there is more
competition for the good and players have to make higher bids. Also, note
that all bidders shade down their bid - otherwise they would not make profits.

2.2 All-Pay Auction

The all-pay auction is simple to analyze after the work we did on the first-
price auction. We assume again the same setup. The corresponding utility
function becomes:

Prob(fj(vj) ≤ b)vi − b = f−1
j (b)vi − b (9)

The corresponding differential equation is:

1

f ′(vi)
vi − 1 = 0 (10)

That means that the only solution is:

f(vi) =
1

2
v2

i (11)

The general solution for n bidders is:

f(vi) =
n− 1

n
vn

i (12)

2.3 Second-Price Auction

This auction is different because it has a much more robust solution:

Theorem 1 In the second-price auction with private values (both indepen-
dent and correlated) bidding one’s own valuation is a weakly dominant strat-
egy.

4



This means that no matter what the other players do you can never do worse
by bidding your own valuation bi = vi.

Proof: Denote the highest bid of all the other players except i by b̂. Can
i gain by deviating from bidding bi = vi? Assume that i bids higher
such that bi > vi. This will only make a difference to the outcome of
the auction for i if vi < b̂ < bi in which case i will win the object now
with the higher bid. But the utility from doing so is vi− b̂ < 0 because
i has to pay b̂. Hence this is not profitable. Similarly, bidding below vi

is also non-profitable. QED

The intuition is that in the second-price auction my bid does not deter-
mine the price I pay. In the other two auction my bid equals my price. This
makes me want to shade down my price - but if my bid does not affect the
price but only my probability of winning then there is no reason to shade it
down.

3 The Revenue-Equivalence-Theorem

THIS SECTION IS NOT EXAM-RELEVANT!
How much revenue does the auctioneer make from the auction (the total

sum of payments he receives from all players)?
The expected revenue is equal to n times the expected payment from each

player. Hence to compare the revenue of different auction formats we simply
have to calculate the expected payment from each bidder with valuation vi.

Let’s look at the first-price, second-price and all-bid auctions with two
bidders and uniform distribution.

• In the first price auction the expected payment from a player with
valuation vi is his bid 1

2
vi times the probability that he will win the

auction which is vi. Hence his expected payment is 1
2
v2

i .

• In the second price auction i pays the second highest bid if he wins.
Since the other player bids his valuation we know that the second high-
est bid is uniformly distributed over [0, vi] (conditional on i winning).
Hence the expected payment from i conditional of winning is 1

2
vi. The

expected payment is this conditional payment times the probability of
winning and is 1

2
v2

i .
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• In the all-pay auction player i always pays 1
2
v2

i which is equal to her
expected payment.

Surprisingly, the revenue from all three auction formats is identical!
This is a special case of the revenue equivalence theorem.

Theorem 2 Revenue Equivalence Theorem. In the symmetric inde-
pendent private value case all auctions which allocate the good to the player
with the highest value for it and which give zero utility to a player with val-
uation v are revenue equivalent.

This theorem even applies to strange and unusual auctions such as a run-off
following:

• There is a first-round auction where the five highest bidders are selected
in a Dutch auction.

• Those bidders face each other in a run-off all bid auction.

Even this two-part auction will give the same revenue to the auctioneer in
all equilibria where the good eventually goes to the player with the highest
value.

Remark 1 All monotonic and symmetric equilibria will satisfy the property
that the highest value bidder gets the object.

Proof of RET: Any auction mechanism which allocates the good will give
player i with valuation vi some surplus S(vi):

S(vi) = qi(vi)vi − pi(vi) (13)

where qi(vi) is the probability of winning with valuation vi and pi(vi)
is the expected price. We know by assumption that S(v) = 0.

Now note, that player i could pretend to be a different type ṽ and
imitate ṽ’s strategy (since only i knows his type this would be possible).
This deviation would give surplus:

Ŝ(ṽ, vi) = qi(ṽ)vi − pi(ṽ) (14)

Now it has to be the case that i would not want to imitate type ṽ.
Hence we get:

∂S(ṽ, vi)

∂ṽ

∣∣∣∣
ṽ=vi

= 0 (15)
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Now we can calculate the derivative of the surplus function:

dS(vi)

dvi

=
dŜ(vi, vi)

dvi

=
∂S(ṽ, vi)

∂ṽ

∣∣∣∣
ṽ=vi︸ ︷︷ ︸

=0

+
∂S(ṽ, vi)

∂vi

∣∣∣∣
ṽ=vi

= qi(vi) = F (vi)
n−1

(16)
Finally, this gives:

S(vi) = S(v) +

∫ vi

v

F (t)n−1dt =

∫ vi

v

F (t)n−1dt (17)

Hence the expected surplus for each player is identical across all auc-
tions. But that also implies that the expected payments from each
player are identical across auctions. QED

4 A Fun Common-Value Auction

“Auctioning off a Dollar” is a nice way to make some money from innocent
friends who have not taken game theory. It’s a simple all-pay auction game
with a single common value.

Dollar Game: The auctioneer has one Dollar. There are n players.
Each of them can bid for the Dollar and the highest bidder wins the dollar
but each bidder has to pay hid bid.

How can we solve for the equilibrium in this game? Note, that this is not
an incomplete information game because the value of the good is known to
both players in advance.

• It’s easy to see that there is no pure-strategy NE.

• Mixed equilibria have to have identical support over [0, 1] (check!!).
You can also show that the distribution F has to be continuous (no
atoms).

• Since players get zero utility from bidding 0 it has to be the case that
all bids give zero utility (otherwise players would not mix across them).

• One can easily show that all equilibria are symmetric. But assuming
this for now we get the probability of winning the dollar when bidding
b is F (b)n−1. Hence we have:

F (b)n−1 − b = 0 (18)
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From this we get that F (b) = b
1

n−1 . With two players this equals
the uniform distribution. With more players this distribution is more
concentrated around 0 as one would expect because competition for the
Dollar heats up and in an all-pay auction bidders would shade down
their bids more strongly.

5 Winner’s Curse

The winner’s curse arises in first-price auctions with a common value envi-
ronment such as the following:

• All players get a signal ti. This signal is drawn from a distribution
g(ti, v) where v is the common value of the object.

• A simple way to generate such an environment is ti = v + εi - every
player observes the value with some noise. This is a good model where
oil companies bid for an oil tract. Since the price of oil is set at the
world market all companies have roughly the same valuation for the
oil well. But they cannot observe the oil directly - they can only get
seismic evaluations which gives an unbiased signal of the true value of
oil in the ground. If one averages across all of these evaluations one
gets a pretty good estimate of v.

A common mistake people make in playing this game is to bid too close
to their signal ti.

• Assume you bid exactly your signal bi = ti = v + εi.

• In this case the most optimistic bid wins (very high ε) and the winner
makes a loss.

• Engineers observed this phenomenon in the 1950s/60s in Texas - win-
ning bidders would make negative profits.

• The phenomenon is called winner’s curse because winning is ‘bad’ news.
Winning means that one has the highest εi. To counteract the winner’s
curse one has to shade down one’s bid appropriately.
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Lecture XVII: Dynamic Games with
Incomplete Information

Markus M. Möbius

May 6, 2004

• Gibbons, sections 4.1 and 4.2

• Osborne, chapter 10

1 Introduction

In the last two lectures I introduced the idea of incomplete information.
We analyzed some important simultaneous move games such as sealed bid
auctions and public goods.

In practice, almost all of the interesting models with incomplete informa-
tion are dynamic games also. Before we talk about these games we’ll need a
new solution concept called Perfect Bayesian Equilibrium.

Intuitively, PBE is to extensive form games with incomplete games what
SPE is to extensive form games with complete information. The concept
we did last time, BNE is a simply the familiar Nash equilibrium under the
Harsanyi representation of incomplete information. In principle, we could
use the Harsanyi representation and SPE in dynamic games of incomplete
information. However, dynamic games with incomplete information typi-
cally don’t have enough subgames to do SPE. Therefore, many ’non-credible’
threats are possible again and we get too many unreasonable SPE’s. PBE
allows subgame reasoning at information sets which are not single nodes
whereas SPE only applies at single node information sets of players (because
only those can be part of a proper subgame).

The following example illustrates some problems with SPE.
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1.1 Example I - SPE

Our first example has no incomplete information at all.

1

L R

2

A B

2

2

1

1

3

3

Its unique SPE is (R,B).
The next game looks formally the same - however, SPE is the same as

NE because the game has no proper subgames.

1

L R RR

2

A B

2

A B

2

2

1

1

3

3

1

1

3

3

The old SPE survives - all (pR + (1− p) RR, B) for all p is SPE. But there
are suddenly strange SPE such as (L, qA + (1− q) B) for q ≥ 1

2
. Player 2’s

2



strategy looks like an non-credible threat again - but out notion of SPE can’t
rule it out!

Remember: SPE can fail to rule out actions which are not optimal given
any ’beliefs’ about uncertainty.

Remark 1 This problem becomes severe with incomplete information: moves
of Nature are not observed by one or both players. Hence the resulting exten-
sive form game will have no or few subgames. This and the above example
illustrate the need to replace the concept of a ’subgame’ with the concept of a
’continuation game’.

1.2 Example II: Spence’s Job-Market Signalling

The most famous example of dynamic game with incomplete information is
Spence’s signalling game. There are two players - a firm and a worker. The
worker has some private information about his ability and has the option of
acquiring some education. Education is always costly, but less so for more
able workers. However, education does not improve the worker’s
productivity at all! In Spence’s model education merely serves as a signal
to firms. His model allows equilibria where able workers will acquire educa-
tion and less able workers won’t. Hence firms will pay high wages only to
those who acquired education - however, they do this because education has
revealed the type of the player rather than improved his productivity.

Clearly this is an extreme assumption - in reality education has presum-
ably dual roles: there is some signalling and some productivity enhancement.
But it is an intriguing insight that education might be nothing more than a
costly signal which allows more able workers to differentiate themselves from
less able ones.

Let’s look at the formal set-up of the game:

• Stage 0: Nature chooses the ability θ of a worker. Suppose Θ = {2, 3}
and that Prob (θ = 2) = p and Prob (θ = 3) = 1− p.

• Stage I: Player 1 (worker) observes his type and chooses eduction level
e ∈ {0, 1}. Education has cost ce

θ
. Note, that higher ability workers

have lower cost and that getting no education is costless.

• Stage II: Player 2 (the competitive labor market) chooses the wage
rate w (e) of workers after observing the education level.

3



Suppose that u1 (e, w, ; θ) = w − ce
θ

and that u2 (e, w; θ) = − (w − θ)2.
Note, that education does not enter the firm’s utility function. Also note,
that the BR of the firm is to set wages equal to the expected ability of
the worker under this utility function. This is exactly what the competitive
labor market would do if θ is equal to the productivity of a worker (the
dollar amount of output he produces). If a firm pays above the expected
productivity it will run a loss, and if it pays below some other firm would
come in and offer more to the worker. So the market should offer exactly
the expected productivity. The particular (rather strange-looking) utility
function we have chosen implements the market outcome with a single firm
- it’s a simple shortcut.

Spence’s game is a signalling game. Each signalling game has the same
three-part structure: nature chooses types, the sender (worker) observes his
type and takes and action, the receiver (firm) sees that action but not the
worker’s type. Hence the firm tries to deduce the worker’s type using his
action. His action therefore serves as a signal. Spence’s game is extreme
because the signal (education) has no value to the firm except for its sig-
nalling function. This is not the case for all signalling models: think of a car
manufacturer who can be of low or high quality and wants to send a signal
to the consumer that he is a high-quality producer. He can offer a short or
long warranty for the car. The extended warranty will not only signal his
type but also benefit the consumer.

The (Harsanyi) extensive form representation of Spence’s game (and any
other signalling game) is given below.

N
Type θ=2: p Type θ=3: 1−p

W

e

W

e

F

w

F

w

w−ce/2
−(w−2)2

w−ce/3
−(w−3)2
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1.3 Why does SPE concept together with Harsanyi
representation not work?

We could find the set of SPE in the Harsanyi representation of the game.
The problem is that the game has no proper subgame in the second round
when the firm makes its decision. Therefore, the firm can make unreasonable
threats such as the following: both workers buy education and the firms
pays the educated worker w = 3 − p (his expected productivity), and the
uneducated worker gets w = −235.11 (or something else). Clearly, every
worker would get education, and the firm plays a BR to a worker getting
education (check for yourself using the Harsanyi representation).

However, the threat of paying a negative wage is unreasonable. Once the
firm sees a worker who has no education it should realize that the worker has
a least ability level 2 and should therefore at least get a wage of w = 2.

2 Perfect Bayesian Equilibrium

Let G be a multistage game with incomplete information and observed ac-
tions in the Harsanyi representation. Write Θi for the set of possible types
for player i and Hi to be the set of possible information sets of player i. For
each information set hi ∈ Hi denote the set of nodes in the information set
with Xi(hi) and X

⋃
Hi

Xi(hi).
A strategy in G is a function si : Hi → ∆ (Ai). Beliefs are a function

µi : Hi → ∆ (Xi) such that the support of belief µi(hi) is within Xi(hi).

Definition 1 A PBE is a strategy profile s∗ together with a belief system
µ such that

1. At every information set strategies are optimal given beliefs and oppo-
nents’ strategies (sequential rationality).

σ∗i (h) maximizes Eµi(x|hi)ui

(
σi, σ

∗
−i|h, θi, θ−i

)

2. Beliefs are always updated according to Bayes rule when applicable.

The first requirement replaces subgame perfection. The second requirement
makes sure that beliefs are derived in a rational manner - assuming that
you know the other players’ strategies you try to derive as many beliefs as
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possible. Branches of the game tree which are reached with zero probability
cannot be derived using Bayes rule: here you can choose arbitrary beliefs.
However, the precise specification will typically matter for deciding whether
an equilibrium is PBE or not.

Remark 2 In the case of complete information and observed actions PBE
reduces to SPE because beliefs are trivial: each information set is a singleton
and the belief you attach to being there (given that you are in the correspond-
ing information set) is simply 1.

2.1 What’s Bayes Rule?

There is a close connection between agent’s actions and their beliefs. Think
of job signalling game. We have to specify the beliefs of the firm in the
second stage when it does not know for sure the current node, but only the
information set.

Let’s go through various strategies of the worker:

• The high ability worker gets education and the low ability worker does
not: e (θ = 2) = 0 and e (θ = 3) = 1. In this case my beliefs at the
information set e = 1 should be Prob (High|e = 1) = 1 and similarly,
Prob (High|e = 0) = 0.

• Both workers get education. In this case, we should have:

Prob (High|e = 1) = 1− p (1)

The beliefs after observing e = 0 cannot be determined by Bayes rule
because it’s a probability zero event - we should never see it if players
follow their actions. This means that we can choose beliefs freely at
this information set.

• The high ability worker gets education and the low ability worker gets
education with probability q. This case is less trivial. What’s the prob-
ability of seeing worker get education - it’s 1 − p + pq. What’s the
probability of a worker being high ability and getting education? It’s
1 − p. Hence the probability that the worker is high ability after we
have observed him getting education is 1−p

1−p+pq
. This is the non-trivial

part of Bayes rule.
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Formally, we can derive the beliefs at some information set hi of player
i as follows. There is a probability p (θj) that the other player is of type θj.
These probabilities are determined by nature. Player j (i.e. the worker) has
taken some action aj such that the information set hi was reached. Each
type of player j takes action aj with some probability σ∗j (aj|θj) according to
his equilibrium strategy. Applying Bayes rule we can then derive the belief
of player i that player j has type θj at information set hi:

µi (θj|aj) =
p (θj) σ∗j (aj|θj)

∑
θ̃j∈Θj

p
(
θ̃j

)
σ∗j

(
aj|θ̃j

) (2)

1. In the job signalling game with separating beliefs Bayes rule gives us
exactly what we expect - we belief that a worker who gets education is
high type.

2. In the pooling case Bayes rule gives us Prob (High|e = 1) = 1−p
p×1+(1−p)×1

=
1 − p. Note, that Bayes rule does NOT apply for finding the
beliefs after observing e = 0 because the denominator is zero.

3. In the semi-pooling case we get Prob (High|e = 1) = (1−p)×1
p×q+(1−p)×1

. Sim-

ilarly, Prob (High|e = 0) = (1−p)×0
p×(1−q)+(1−p)×0

= 0.

3 Signalling Games and PBE

It turns out that signalling games are a very important class of dynamic
games with incomplete information in applications. Because the PBE con-
cept is much easier to state for the signalling game environment we define it
once again in this section for signalling games. You should convince yourself
that the more general definition from the previous section reduces to the
definition below in the case of signalling games.

3.1 Definitions and Examples

Every signalling game has a sender, a receiver and two periods. The sender
has private information about his type and can take an action in the first
action. The receiver observes the action (signal) but not the type of the
sender, and takes his action in return.
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• Stage 0: Nature chooses the type θ1 ∈ Θ1of player 1 from probability
distribution p.

• Stage 1: Player 1 observes θ1 and chooses a1 ∈ A1.

• Stage 2: Player 2 observes a1 and chooses a2 ∈ A2.

The players utilities are:

u1 = u1 (a1, a2; θ1) (3)

u2 = u2 (a1, a2; θ1) (4)

3.1.1 Example 1: Spence’s Job Signalling Game

• worker is sender; firm is receiver

• θ is the ability of the worker (private information to him)

• A1 = {educ, no educ}
• A2 = {wage rate}

3.1.2 Example 2: Initial Public Offering

• player 1 - owner of private firm

• player 2 - potential investor

• Θ - future profitability

• A1 - fraction of company retained

• A2 - price paid by investor for stock

3.1.3 Example 3: Monetary Policy

• player 1 = FED

• player 2 - firms

• Θ - Fed’s preference for inflation/ unemployment

• A1 - first period inflation

• A2 - expectation of second period inflation
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3.1.4 Example 4: Pretrial Negotiation

• player 1 - defendant

• player 2 - plaintiff

• Θ - extent of defendant’s negligence

• A1 - settlement offer

• A2 - accept/reject

3.2 PBE in Signalling Games

A PBE in the signalling game is a strategy profile (s∗1 (θ1) , s∗2 (a1)) together
with beliefs µ2 (θ1|a1) for player 2 such that

1. Players strategies are optimal given their beliefs and the opponents’
strategies, i.e.

s∗1 (θ1) maximizes u1 (a1, s
∗
2 (a1) ; θ1) for all θ1 ∈ Θ1 (5)

s∗2 (a1) maximizes
∑

θ1∈Θ1

u2 (a1, a2; θ1) µ2 (θ1|a1) for all a1 ∈ A1(6)

2. Player 2’s beliefs are compatible with Bayes’ rule. If any type of player
1 plays a1 with positive probability then

µ2 (θ1|a1) =
p (θ1) Prob (s∗1 (θ1) = a1)∑

θ′1∈Θ1
p (θ′1) Prob (s∗1 (θ′1) = a1)

for all θ1 ∈ Θ1

3.3 Types of PBE in Signalling Games

To help solve for PBE’s it helps to think of all PBE’s as taking one of the
following three forms”

1. Separating - different types take different actions and player 2 learns
type from observing the action

2. Pooling - all types of player 1 take same action; no info revealed

3. Semi-Separating - one or more types mixes; partial learning (often
only type of equilibrium
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Remark 3 In the second stage of the education game the ”market” must
have an expectation that player 1 is type θ = 2 and attach probability µ (2|a1)
to the player being type 2. The wage in the second period must be between
2 and 3. This rules out the unreasonable threat of the NE I gave you in the
education game (with negative wages).1

Remark 4 In the education game suppose the equilibrium strategies are
s∗1 (θ = 2) = 0 and s∗1 (θ = 3) = 1, i.e. only high types get education. Then
for any prior (p, 1− p) at the start of the game beliefs must be:

µ2 (θ = 2|e = 0) = 1

µ2 (θ = 3|e = 0) = 0

µ2 (θ = 2|e = 1) = 0

µ2 (θ = 3|e = 1) = 1

If player 1’s strategy is s∗1 (θ = 2) = 1
2
× 0 + 1

2
× 1 and s∗1 (θ = 3) = 1:

µ2 (θ = 2|e = 0) = 1

µ2 (θ = 3|e = 0) = 0

µ2 (θ = 2|e = 1) =
p
2

p
2

+ 1− p
=

p

2− p

µ2 (θ = 3|e = 1) =
2− 2p

2− p

Also note, that Bayes rule does NOT apply after an actions which should not
occur in equilibrium. Suppose s∗1 (θ = 2) = s∗1 (θ = 3) = 1 then it’s OK to
assume

µ2 (θ = 2|e = 0) =
57

64

µ2 (θ = 3|e = 0) =
7

64
µ2 (θ = 2|e = 1) = p

µ2 (θ = 3|e = 1) = 1− p

The first pair is arbitrary.

1It also rules out unreasonable SPE in the example SPE I which I have initially. Under
any beliefs player 2 should strictly prefer B.
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Remark 5 Examples SPE II and SPE III from the introduction now make
sense - if players update according to Bayes rule we get the ’reasonable’ beliefs
of players of being with equal probability in one of the two nodes.

4 Solving the Job Signalling Game

Finally, after 11 tough pages we can solve our signalling game. The solution
depends mainly on the cost parameter c.

4.1 Intermediate Costs 2 ≤ c ≤ 3

A separating equilibrium of the model is when only the able worker buys
education and the firm pays wage 2 to the worker without education and
wage 3 to the worker with education. The firm beliefs that the worker is able
iff he gets educated.

• The beliefs are consistent with the equilibrium strategy profile.

• Now look at optimality. Player 2 sets the wage to the expected wage
so he is maximizing.

• Player 1 of type θ = 2 gets 3 − c
2
≤ 2 for a1 = 1 and 2 for a1 = 0.

Hence he should not buy education.

• Player 1 of type θ = 3 gets 3 − c
3
≥ 2 for a1 = 1 and 2 for a1 = 0.

Hence he should get educated.

1. Note that for too small or too big costs there is no separating PBE.

2. There is no separating PBE where the θ = 2 type gets an education
and the θ = 3 type does not.

4.2 Small Costs c ≤ 1

A pooling equilibrium of the model is that both workers buy education and
that the firm pays wage w = 3 − p if it observes education, and wage 2
otherwise. The firm believes that the worker is able with probability 1− p if
it observes education, and that the worker is of low ability if it observes no
education.
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• The beliefs are consistent with Bayes rule for e = 1. If e = 0 has been
observed Bayes rule does not apply because e = 0 should never occur
- hence any belief is fine. The belief that the worker is low type if he
does not get education makes sure that the worker gets punished for
not getting educated.

• The firm pays expected wage - hence it’s optimal response. The low
ability guy won’t deviate as long 2.5− c

2
≥ 2 and the high ability type

won’t deviate as long as 2.5 − c
3
≥ 2. For c ≤ 1 both conditions are

true.

1. While this pooling equilibrium only works for small c there is always
another pooling equilibrium where no worker gets education and the
firms thinks that any worker who gets education is of the low type.

4.3 1 < c < 2

Assume that p = 1
2

for this section. In the parameter range 1 < c < 2 there is
a semiseparating PBE of the model. The high ability worker buys education
and the low ability worker buys education with positive probability q. The
wage is w = 2 if the firm observes no education and set to w = 2 + 1

1+q
if

it observes education. The beliefs that the worker is high type is zero if he
gets no education and 1

1+q
if he does.

• Beliefs are consistent (check!).

• Firm plays BR.

• Player 1 of low type won’t deviate as long as 2 + 1
1+q

− c
2
≤ 2.

• Player 1 of high type won’t deviate as long as 2 + 1
1+q

− c
3
≥ 2.

Set 1 + q = 2
c
. It’s easy to check that the first condition is binding and

the second condition is strictly true. So we are done if we choose q = 2
c
− 1.

Note, that as c → 2 we get back the separating equilibrium and as c → 1 we
get the pooling one.
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Lecture XVIII: Games with Incomplete
Information II - More Examples

Markus M. Möbius

May 6, 2004

• Gibbons, section 4.2

• Osborne, chapter 10

1 Introduction

This lecture gives more examples of games of incomplete information, in
particular signalling games.

2 The Lobbying Game

We consider the following model of lobbying.

• Nature chooses whether the lobbyist’s industry is headed for Good or
Bad times and reveals the state of the world {G,B} to the lobbyist.

• The a priori probability of Good times is p.

• The Lobbyist can then send a message to Congress. Following this
message, Congress chooses whether or not to enact a subsidy. Let
{S, N} denote the actions available to Congress. At the end of the
period, the state of the world is revealed to Congress.

• A subsidy costs Congress k. It generates a return r > k for Congress
if and only if times are Bad. We assume that (1− p)r < k.
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• The Lobbyist gets a payoff of zero if the subsidy is not passed, a payoff
of 1 if the subsidy passes and times are Bad, and a subsidy of 1/2 if
the subsidy passes and times are good.

1. Is there a PBE in which the subsidy passes? Answer: NO

2. Now suppose lobbying Congress is costly. In particular, the
lobbyist must incur a cost c to be heard. Show that if c > 1/2,
there is a PBE in which the subsidy passes whenever the state
of the world is bad.

3 Legal Settlements

• There are two players, a plaintiff and a defendant in a civil suit. The
plaintiff knows whether or not he will win the case if he goes to trial,
but the defendant does not have this information.

• The defendant knows that the plaintiff knows who would win, and the
defendant has prior beliefs that there is probability 1

3
that the plaintiff

will win; these prior beliefs are common knowledge.

• If the plaintiff wins, his payoff is 3 and the defendant’s payoff is -4;
if the plaintiff loses, his payoff is -1 and the defendant’s is 0. (This
corresponds to the defendant paying cash damages of 3 if the plaintiff
wins, and the loser of the case paying court costs of 1.)

• The plaintiff has two possible actions: He can ask for either a low
settlement of m = 1 or a high settlement of m = 2. If the defendant
accepts a settlement offer of m, the plaintiff’s payoff is m and the
defendant’s is −m. If the defendant rejects the settlement offer, the
case goes to court.

1. List all the pure-strategy PBE strategy profiles. For each such profile,
specify the beliefs of the defendant as a function of m, and verify that
the combination of these beliefs and the profile is in fact a PBE.

2. Explain why the other profiles are not PBE.
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4 Corporate Investment

This is a variant of the IPO game. An entrepreneur needs financing to realize
a new project and can offer an outside investor an equity stake in his company.
The stake gives the investor a share of the future (next period’s) cashflow
of the company: the profits from the existing business plus the profits from
the project. The profitability of the nw project is known to both investor
and entrepreneur. However, only the entrepreneur knows the profitability of
the existing company. The investor therefore runs the risk of investing in
an unprofitable business. The new project requires investment I and gives
payoff R > (1 + r) I in the next period (where r is the interest rate).

• Nature chooses the type of the entrepreneur’s firm which can be highly
profitable (π = H) or less profitable (π = L). The business is not so
profitable with probability p.

• The entrepreneur observes π and then offers equity stake s such that
0 ≤ s ≤ 1.

• The investor can accept or reject.

5 Monetary Policy

5.1 The Barro-Gordon model (1983)

There are two periods. In the first period firms form expectations about
inflation πe. Their payoff is − (π − πe)

2. In the second period the Fed sets
inflation π. The Fed has objective function:

−cπ2 − (y − y∗)2 (1)

Actual output y is:
y = by∗ + d (π − π∗) (2)

where b < 1.

5.2 Barro-Gordon with Signalling

Now assume that the Fed can either be weak (c = W ) or strong (c = S) such
that S > W > 0. The firm and the Fed play the Barro-Gordon game now
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for two periods: the first period can now be used to signal the resolve of the
Fed.
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